Single and Dual Low Voltage, Rail-to-Rail Input and Output, Operational Amplifiers

LMV931, LMV932

The LMV931 Single and LMV932 Dual are CMOS low-voltage operational amplifiers which can operate on single-sided power supplies (1.8 V to 5.0 V) with rail-to-rail input and output swing. Both devices come in small state-of-the-art packages and require very low quiescent current making them ideal for battery-operated, portable applications such as notebook computers and hand-held instruments. Rail-to-Rail operation provides improved signal-to-noise performance plus the small packages allow for closer placement to signal sources thereby reducing noise pickup.

The single LMV931 is offered in space saving SC70-5 package. The dual LMV932 is in either a Micro8 or SOIC package. These small packages are very beneficial for crowded PCB's.

Features

- Performance Specified on Single-Sided Power Supply: 1.8 V, 2.7 V, and 5 V
- Small Packages:

LMV931 in a SC-70
LMV932 in a Micro8 or SOIC-8

- No Output Crossover Distortion
- Extended Industrial Temperature Range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Low Quiescent Current $210 \mu \mathrm{~A}$, Max Per Channel
- No Output Phase-Reversal from Overdriven Input
- These are $\mathrm{Pb}-$ Free Devices

Typical Applications

- Notebook Computers, Portable Battery-Operated Instruments, PDA's
- Active Filters, Low-Side Current Monitoring

MARKING DIAGRAMS

LMV931 (Single)

M = Date Code
A = Assembly Location
Y = Year
W = Work Week

- = Pb-Free Package
(Note: Microdot may be in either location)

LMV932 (Dual)

$$
\text { CASE } 751
$$

A	$=$ Assembly Location
Y	$=$ Year
L	$=$ Wafer Lot
W	$=$ Work Week
-	$=$ Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 14 of this data sheet.

LMV931, LMV932

PIN CONNECTIONS

(Top View)

MAXIMUM RATINGS

Symbol	Rating	Value	Unit
V_{S}	Supply Voltage (Operating Range $\mathrm{V}_{\mathrm{S}}=1.8 \mathrm{~V}$ to 5.5 V)	5.5	V
$\mathrm{V}_{\text {IDR }}$	Input Differential Voltage	\pm Supply Voltage	V
$V_{\text {ICR }}$	Input Common Mode Voltage Range	-0.5 to (V_{CC}) +0.5	V
	Maximum Input Current	10	mA
$\mathrm{t}_{\text {So }}$	Output Short Circuit (Note 1)	Continuous	
T_{J}	Maximum Junction Temperature (Operating Range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$)	150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance:SC-70 TSOP-5 Micro8	$\begin{aligned} & 280 \\ & 333 \\ & 238 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
	Mounting Temperature (Infrared or Convection $\leq 30 \mathrm{sec}$)	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
ESD data available upon request.

1. Continuous short-circuit operation to ground at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of $150^{\circ} \mathrm{C}$. Output currents in excess of 45 mA over long term may adversely affect reliability. Shorting output to either V_{CC} or V_{EE} will adversely affect reliability.
1.8 V DC ELECTRICAL CHARACTERISTICS (Note 2) Unless otherwise noted, all min $/ \mathrm{max}$ limits are guaranteed for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{V}_{\mathrm{S}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{S}} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{S}} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Typical specifications represent the most likely parametric norm.

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Input Offset Voltage	V_{10}	LMV931 (Single) ($-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)		1	6	mV
		LMV932 (Dual) ($-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)		1	7.5	
Input Offset Voltage Average Drift	TCV ${ }_{\text {IO }}$			5.5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	I_{B}	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		<1		nA
Input Offset Current	10	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		<1		nA
Supply Current (per Channel)	ICC	In Active Mode		75	185	$\mu \mathrm{A}$
		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			205	
Common Mode Rejection Ratio	CMRR	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 0.6 \mathrm{~V}, 1.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 1.8 \mathrm{~V}$	50	70		dB
		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	50			
		$-0.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 0 \mathrm{~V}, 1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 2 \mathrm{~V}$	50	70		
Power Supply Rejection Ratio	PSRR	$1.8 \mathrm{~V} \leq \mathrm{V}^{+} \leq 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0.5 \mathrm{~V}$	50	70		dB
		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	50			
Input Common-Mode Voltage Range	Vcm	For CMRR $\geq 50 \mathrm{~dB}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}} \\ & -0.2 \end{aligned}$	$\begin{aligned} & -0.2 \\ & \text { to } 2.1 \end{aligned}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & +0.2 \end{aligned}$	V
		For CMRR $\geq 50 \mathrm{~dB}$ and $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	V_{EE}		V_{CC}	
		For CMRR $\geq 50 \mathrm{~dB}$ and $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EEE}} \\ & +0.2 \end{aligned}$		$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}} \\ -0.2 \end{gathered}$	
Large Signal Voltage Gain LMV931 (Single)	A_{V}	$\mathrm{R}_{\mathrm{L}}=600 \Omega$ to $0.9 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V}$ to $1.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0.5 \mathrm{~V}$	77	101		dB
		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	73			
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $0.9 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V}$ to 1.6 V, $\mathrm{V}_{\mathrm{CM}}=0.5 \mathrm{~V}$	80	105		
		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	75			
Large Signal Voltage Gain LMV932 (Dual)		$\mathrm{R}_{\mathrm{L}}=600 \Omega$ to $0.9 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V}$ to $1.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0.5 \mathrm{~V}$	75	90		
		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	72			
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $0.9 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V}$ to 1.6 V, $\mathrm{V}_{\mathrm{CM}}=0.5 \mathrm{~V}$	78	100		
		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	75			
Output Swing	V_{OH}	$\mathrm{R}_{\mathrm{L}}=600 \Omega$ to $0.9 \mathrm{~V}, \mathrm{~V}_{\text {IN }}= \pm 100 \mathrm{mV}$	1.65	1.72		V
		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	1.63			
	$\mathrm{V}_{\text {OL }}$	$\mathrm{R}_{\mathrm{L}}=600 \Omega$ to $0.9 \mathrm{~V}, \mathrm{~V}_{\text {IN }}= \pm 100 \mathrm{mV}$		0.077	0.105	
		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			0.12	
	V_{OH}	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $0.9 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}= \pm 100 \mathrm{mV}$	1.75	1.77		
		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	1.74			
	$\mathrm{V}_{\text {OL }}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $0.9 \mathrm{~V}, \mathrm{~V}_{\text {IN }}= \pm 100 \mathrm{mV}$		0.24	0.035	
		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			0.04	
Output Short Circuit Current	I_{0}	Sourcing, $\mathrm{Vo}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=+100 \mathrm{mV}$	4.0	30		mA
		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	3.3			
		Sinking, $\mathrm{Vo}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=-100 \mathrm{mV}$	7.0	60		
		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	5.0			

2. Guaranteed by design and/or characterization.

LMV931, LMV932

1.8 V AC ELECTRICAL CHARACTERISTICS Unless otherwise specified, all limits are guaranteed for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=1.8 \mathrm{~V}$, $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{S}} / 2, \mathrm{Vo}=\mathrm{V}_{\mathrm{S}} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Typical specifications represent the most likely parametric norm. Min/Max specifications are guaranteed by testing, characterization, or statistical analysis.

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Slew Rate	SR	(Note 3)		0.35		V/uS
Gain Bandwidth Product	GBWP			1.4		MHz
Phase Margin	$\Theta \mathrm{m}$			67		。
Gain Margin	Gm			7		dB
Input-Referred Voltage Noise	e_{n}	$\mathrm{f}=50 \mathrm{kHz}, \mathrm{V}_{\mathrm{CM}}=0.5 \mathrm{~V}$		60		$\mathrm{nV} / \sqrt{\text { Hz }}$
Total Harmonic Distortion	THD	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}_{\mathrm{PP}}$		0.023		\%
Amplifier-to-Amplifier Isolation		(Note 4)		123		dB

3. Connected as voltage follower with input step from V_{EE} to V_{CC}. Number specified is the slower of the positive and negative slew rates.
4. Input referred, $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to $\mathrm{V}_{\mathrm{S}} / 2$. Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}_{\mathrm{Pp}}$. (For Supply Voltages $<3 \mathrm{~V}$, $\left.\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}\right)$.
2.7 V DC ELECTRICAL CHARACTERISTICS (Note 5) Unless otherwise noted, all min/max limits are guaranteed for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{S}} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{S}} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Typical specifications represent the most likely parametric norm.

| Parameter | Symbol | Condition | Min | Typ | Max |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Offset Voltage | V_{IO} | $\mathrm{LMV931}\left(\right.$ Single $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ | | 1 | 6 |

5. Guaranteed by design and/or characterization.

LMV931, LMV932

2.7 V AC ELECTRICAL CHARACTERISTICS Unless otherwise specified, all limits are guaranteed for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}$, $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{S}} / 2, \mathrm{Vo}=\mathrm{V}_{\mathrm{S}} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Typical specifications represent the most likely parametric norm. Min/Max specifications are guaranteed by testing, characterization, or statistical analysis.

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Slew Rate	SR	(Note 6)		0.4		$\mathrm{~V} / \mathrm{uS}$
Gain Bandwidth Product	GBWP			1.4		MHz
Phase Margin	$\Theta \mathrm{m}$			70		\circ
Gain Margin	Gm			7.5		dB
Input-Referred Voltage Noise	e n	$\mathrm{f}=50 \mathrm{kHz}, \mathrm{V} \mathrm{CM}=1.0 \mathrm{~V}$	57		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$	
Total Harmonic Distortion	THD	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{VPP}$		0.022		$\%$
Amplifier-to-Amplifier Isolation		(Note 7)		123		dB

6. Connected as voltage follower with input step from V_{EE} to V_{CC}. Number specified is the slower of the positive and negative slew rates.
7. Input referred, $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to $\mathrm{V}_{\mathrm{S}} / 2$. Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}_{\mathrm{Pp}}$. (For Supply Voltages $<3 \mathrm{~V}$, $\left.\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}\right)$.

LMV931, LMV932

5 V DC ELECTRICAL CHARACTERISTICS (Note 8) Unless otherwise noted, all min/max limits are guaranteed for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{S}} / 2, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{S}} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Typical specifications represent the most likely parametric norm.

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Input Offset Voltage	V_{10}	LMV931 (Single) ($-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)		1	6	mV
		LMV932 (Dual) ($-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$)		1	7.5	
Input Offset Voltage Average Drift	TCV ${ }_{10}$			5.5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current	I_{B}	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		<1		nA
Input Offset Current	I_{1}	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		<1		nA
Supply Current (per Channel)	I_{CC}	In Active Mode		95	210	$\mu \mathrm{A}$
		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			230	
Common-Mode Rejection Ratio	CMRR	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 3.8 \mathrm{~V}, 4.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 5.0 \mathrm{~V}$	50	70		dB
		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	50			
		$-0.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 0 \mathrm{~V}, 5.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq 5.2 \mathrm{~V}$	50	70		
Power Supply Rejection Ratio	PSRR	$1.8 \mathrm{~V} \leq \mathrm{V}^{+} \leq 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0.5 \mathrm{~V}$	50	70		dB
		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	50			
Input Common-Mode Voltage Range	Vcm	For CMRR $\geq 50 \mathrm{~dB}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\begin{gathered} \mathrm{V}_{\mathrm{EE}} \\ -0.2 \end{gathered}$	$\begin{gathered} -0.2 \\ \text { to } 5.3 \end{gathered}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{cc}} \\ & +0.2 \end{aligned}$	V
		For CMRR $\geq 50 \mathrm{~dB}$ and $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	V_{EE}		V_{CC}	
		For CMRR $\geq 50 \mathrm{~dB}$ and $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\begin{aligned} & \hline V_{\mathrm{EEE}} \\ & +0.3 \end{aligned}$		$\begin{gathered} \hline \mathrm{V}_{\mathrm{cc}} \\ -0.3 \end{gathered}$	
Large Signal Voltage Gain LMV931 (Single)	A_{V}	$\mathrm{R}_{\mathrm{L}}=600 \Omega$ to $2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V}$ to 4.8 V	88	102		dB
		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	87			
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V}$ to 4.8 V	94	113		
		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	93			
Large Signal Voltage Gain LMV932 (Dual)	A_{V}	$\mathrm{R}_{\mathrm{L}}=600 \Omega$ to $2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V}$ to 4.8 V	81	90		
		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	78			
		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V}$ to 4.8 V	85	100		
		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	82			
Output Swing	V_{OH}	$\mathrm{R}_{\mathrm{L}}=600 \Omega$ to $2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}= \pm 100 \mathrm{mV}$	4.855	4.89		V
		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	4.835			
	VOL	$\mathrm{R}_{\mathrm{L}}=600 \Omega$ to $2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}= \pm 100 \mathrm{mV}$		0.12	0.16	
		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			0.18	
	V_{OH}	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $2.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}= \pm 100 \mathrm{mV}$	4.945	4.967		
		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	4.935			
	V OL	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to $2.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}= \pm 100 \mathrm{mV}$		0.037	0.065	
		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			0.075	
Output Short-Circuit Current	10	Sourcing, Vo $=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=+100 \mathrm{mV}$	55	65		mA
		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	45			
		Sinking, Vo $=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=-100 \mathrm{mV}$	58	80		
		$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	45			

8. Guaranteed by design and/or characterization.

LMV931, LMV932

5 V AC ELECTRICAL CHARACTERISTICS Unless otherwise specified, all limits are guaranteed for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{S}} / 2, \mathrm{Vo}_{\mathrm{o}}=\mathrm{V}_{\mathrm{S}} / 2$ and $\mathrm{R}_{\mathrm{L}}>1 \mathrm{M} \Omega$. Typical specifications represent the most likely parametric norm.

Parameter	Symbol	Condition	Min	Typ	Max	Unit
Slew Rate	SR	(Note 9)		0.48		V/uS
Gain Bandwidth Product	GBWP			1.5		MHz
Phase Margin	$\Theta \mathrm{m}$			65		-
Gain Margin	Gm			8		dB
Input-Referred Voltage Noise	e_{n}	$\mathrm{f}=50 \mathrm{kHz}, \mathrm{V}_{\mathrm{CM}}=2 \mathrm{~V}$		50		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Total Harmonic Distortion	THD	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{~V}_{\mathrm{O}}=1 \mathrm{~V}_{\mathrm{PP}}$		0.022		\%
Amplifier-to- Amplifier Isolation		(Note 10)		123		dB

9. Connected as voltage follower with input step from V_{EE} to V_{CC}. Number specified is the slower of the positive and negative slew rates. 10. Input referred, $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ connected to $\mathrm{V}_{\mathrm{S}} / 2$. Each amp excited in turn with 1 kHz to produce $\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}_{\mathrm{Pp}}$. (For Supply Voltages $<3 \mathrm{~V}$, $\left.\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}\right)$.
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ unless otherwise specified)

Figure 2. Supply Current vs. Supply Voltage

Figure 4. Sourcing Current vs. Output Voltage ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Figure 6. Output Voltage Swing vs. Supply Voltage

Figure 3. Supply Current vs. Supply Voltage

Figure 5. Sinking Current vs. Output Voltage

$$
\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)
$$

Figure 7. Output Voltage vs. Supply Voltage

LMV931, LMV932

TYPICAL CHARACTERISTICS
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ unless otherwise specified)

Figure 8. Open Loop Gain and Phase

Figure 9. Frequency Response vs. CL

Figure 10. Frequency Response vs. CL
Figure 11. Gain and Phase vs. Temp

Figure 12. Gain and Phase vs. Temp

TYPICAL CHARACTERISTICS
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ unless otherwise specified)

Figure 13. CMRR vs. Frequency

Figure 15. Input Voltage Noise vs. Frequency

Figure 14. PSRR vs. Frequency

Figure 16. THD vs. Frequency

Figure 17. Slew Rate vs. Supply Voltage

$$
\left(T_{A}=25^{\circ} \mathrm{C} \text { and } \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}\right. \text { unless otherwise specified) }
$$

TIME ($0.25 \mu \mathrm{~s} / \mathrm{DIV}$)
Figure 18. Small Signal Transient Response

TIME (0.25 us / DIV)
Figure 20. Small Signal Transient Response

Figure 22. Large Signal Transient Response

TIME ($0.25 \mu \mathrm{~s} / \mathrm{DIV}$)
Figure 19. Small Signal Transient Response

Figure 21. Large Signal Transient Response

Figure 23. Large Signal Transient Response

LMV931, LMV932

TYPICAL CHARACTERISTICS
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$ unless otherwise specified)

Figure 24. Short-Circuit vs. Temperature (Sinking)

Figure 26. Offset Voltage vs. Common Mode Range V_{DD}

Figure 25. Short-Circuit vs. Temperature (Sourcing)

Figure 27. Offset Voltage vs. Common Mode Range

Figure 28. Offset Voltage vs. Common Mode Range

LMV931, LMV932

APPLICATION INFORMATION

Figure 29. Voltage Reference

Figure 31. Comparator with Hysteresis

Figure 30. Wien Bridge Oscillator

Given: $f_{0}=$ center frequency

$$
A\left(f_{0}\right)=\text { gain at center frequency }
$$

Choose value $\mathrm{f}_{\mathrm{o}}, \mathrm{C}_{\mathrm{Q}}$
Then: $R 3=\frac{Q}{\pi f_{\mathrm{O}} \mathrm{C}}$

$$
\mathrm{R} 1=\frac{\mathrm{R} 3}{2 \mathrm{~A}\left(\mathrm{f}_{\mathrm{O}}\right)}
$$

$$
R 2=\frac{R 1 R 3}{4 Q^{2} R 1-R 3}
$$

For less than 10% error from operational amplifier,
$\left(\left(Q_{\mathrm{O}} \mathrm{f}_{\mathrm{O}}\right) / B W\right)<0.1$ where f_{o} and BW are expressed in Hz . If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.
Figure 32. Multiple Feedback Bandpass Filter

ORDERING INFORMATION

Order Number	Number of Channels	Number of Pins	Package Type	Shipping †
LMV931SQ3T2G	Single	5	SC70-5 (Pb-Free)	$3000 /$ Tape \& Reel
LMV931SN3T1G	Single	5	TSOP-5 (Pb-Free)	$3000 /$ Tape \& Reel
LMV932DMR2G	Dual	8	Micro8 (Pb-Free)	$4000 /$ Tape \& Reel
LMV932DR2G	Dual	8	SOIC-8 (Pb-Free)	$2500 /$ Tape \& Reel

[^0] Specifications Brochure, BRD8011/D.

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. 419A-01 OBSOLETE. NEW STANDARD 419A-02.
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.071	0.087	1.80	2.20
B	0.045	0.053	1.15	1.35
C	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	
G	0.026 BSC		0.65	

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-F r e e$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.

```
```

STYLE 1:

```
```

STYLE 1:
STYLE 1:
STYLE 1:
2. EMITTER
2. EMITTER
3. BASE
3. BASE
4. COLLECTOR
4. COLLECTOR
5. COLLECTOR

```
```

 5. COLLECTOR
    ```
```

```
STYLE 2:
    PIN 1. ANODE
    2. EMITTER
    STYLE 3
```

STYLE 6:
PIN 1. EMITTER 2
2. BASE 2
3. EMITTER 1
4. COLLECTOR
5. COLLECTOR 2/BASE

STYLE 7:
PIN 1. BASE
2. EMITTER
3. BASE
4. COLLECTOR
5. COLLECTOR

STYLE 3
PIN 1. ANODE
2. N/C
3. ANODE 2
4. CATHODE 2
5. CATHODE

STYLE 8

PIN 1. CATHODE
2. COLLECTOR
3. N / C
4. BASE
5. EMITTER

SOLDER FOOTPRINT

STYLE 4:
PIN 1. SOURCE 1
2. DRAIN $1 / 2$
3. SOURCE 1
4. GATE 1
5. GATE 2

STYLE 9:
PIN 1. ANODE
2. CATHODE
3. ANODE
4. ANODE
5. ANODE

STYLE 5:

PIN 1. CATHODE
2. COMMON ANODE
3. CATHODE 2
4. CATHODE 3
5. CATHODE 4

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

| DOCUMENT NUMBER: | 98ASB42984B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SC-88A (SC-70-5/SOT-353) | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TSOP-5
CASE 483
ISSUE N
DATE 12 AUG 2020
SCALE 2:1
 Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98ARB18753C | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TSOP-5 | PAGE 1 OF 1 |

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
SCALE 1:1
DATE 16 FEB 2011

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
6. 751-01 THRU 751-06 ARE OBSOLETE. NEW
7. 751-01 THRU 751-06 AR
STANDARD IS 751-07.

| DIM | MILLIMETERS | | INCHES | |
| :---: | :---: | :---: | :---: | :---: |
| | MIN | MAX | MIN | MAX |
| | 4.80 | 5.00 | 0.189 | 0.197 |
| B | 3.80 | 4.00 | 0.150 | 0.157 |
| C | 1.35 | 1.75 | 0.053 | 0.069 |
| D | 0.33 | 0.51 | 0.013 | 0.020 |
| G | 1.27 BSC | | 0.050 BSC | |
| H | 0.10 | 0.25 | 0.004 | 0.010 |
| J | 0.19 | 0.25 | 0.007 | 0.010 |
| K | 0.40 | 1.27 | 0.016 | 0.050 |
| M | 0 | 0° | 8° | 0 |
| | \circ | 8 | | |
| N | 0.25 | 0.50 | 0.010 | 0.020 |
| S | 5.80 | 6.20 | 0.228 | 0.244 |

GENERIC

MARKING DIAGRAM*

XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
= Year
$\begin{array}{ll}\mathrm{W} & =\text { Work Week } \\ \text { - } & =\text { Pb-Free Package }\end{array}$
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " $\mathrm{=}$ ", may or may not be present. Some products may not follow the Generic Marking.
*For additional information on our $\mathrm{Pb}-$ Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLES ON PAGE 2

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | SOIC-8 NB | PAGE 1 OF 2 |

[^1] rights of others.

SOIC-8 NB
CASE 751-07
ISSUE AK
DATE 16 FEB 2011

STYLE

| PIN 1. | EMITTER |
| ---: | :--- |
| 2. | COLLECTOR |
| 3. | COLLECTOR |
| 4. | EMITTER |
| 5. | EMITTER |
| 6. | BASE |
| 7. | BASE |
| 8. | EMITTER |
| STYLE 5: | |
| PIN 1. | DRAIN |
| 2. | DRAIN |
| 3. | DRAIN |
| 4. | DRAIN |
| 5. | GATE |
| 6. | GATE |
| 7. | SOURCE |
| 8. | SOURCE |

STYLE 9:
PIN 1. EMITTER, COMMON
COLLECTOR, DIE \#1 COLLECTOR, DIE \#2 EMITTER, COMMON EMITTER, COMMON BASE, DIE \#2
BASE, DIE \#1
8. EMITTER, COMMON

STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE

GATE
DRAIN
DRAIN
DRAIN
8. DRAIN

STYLE 17:
PIN 1. VCC
V2OUT
V10UT
V10UT
TXE
RXE
VEE
7. GND
8. ACC

STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3

CATHODE 4
CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6

STYLE 25:
PIN 1. VIN
2. N / C

REXT
GND
IOUT
IOUT
IOUT
8. IOUT

STYLE 29

PIN 1. BASE, DIE \#
EMITTER, \#1
BASE, \#2
. EMITTER, \#2
5. COLLECTOR, \#2
6. COLLECTOR, \#2
7. COLLECTOR, \#1
8. COLLECTOR, \#1

STYLE
PIN 1. COLIECTOR,
2. COLLECTOR, \#
3. COLLECTOR, \#2

COLLECTOR, \#2
BASE, \#2
. EMITTER, \#2
7. BASE, \#1
8. EMITTER, \#1

STYLE 6:
PIN 1. SOURCE
DRAIN
3. DRAIN
4. SOURCE

SOURCE
6. GATE
7. GATE
8. SOURCE

STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT

GROUND
GROUND
BIAS 2
7. INPUT
8. GROUND

STYLE 14
PIN 1. N-SOURCE
2. N-GATE
. P-SOURCE
P-GATE
5.DRAIN
6. P-DRAIN
7. N-DRAIN
8. N -DRAIN

STYLE 18
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE

STYLE 22 :
PIN 1. I/O LINE
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND

STYLE 26:
PIN 1. GND
2. $\mathrm{dv} / \mathrm{dt}$
3. ENABLE
4. ILIMIT

SOURCE
SOURCE
SOURCE
8. VCC

STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
. SOURCE 1/DRAIN 2
SOURCE 1/DRAIN 2
8. GATE 1

STYLE 3
STYLE
2. DRAIN, DIE
2. DRAIN, \#1
2. DRAIN, \#
3. DRAIN, \#2
4. DRAIN, \#2
5. GATE, \#2
7. GATE, \#1
8. SOURCE, \#1

STYLE 7

PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd

STYLE 11:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN 1
8. DRAIN 1

STYLE 15:

PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON

STYLE 19:

PIN 1. SOURCE
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1

STYLE 23:

PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT

STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN

STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
8. COMMON CATHODE

STYLE 8:

PIN 1. COLLECTOR, DIE \#1
2. BASE, \#1
3. BASE, \#2
4. COLLECTOR, \#2
5. COLLECTOR, \#2
6. EMITTER, \#2
7. EMITTER, \#1
8. COLLECTOR, \#1

STYLE 12

PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 16:

PIN 1. EMITTER, DIE \#1
2. BASE, DIE \#1
3. EMITTER, DIE \#2
3. EMITTER, DIE
4. BASE, DIE \#2
4. BASE, DIE \#2
6. COLLECTOR, DIE \#2
7. COLLECTOR, DIE \#1
8. COLLECTOR, DIE \#1

STYLE 20:

PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN

STYLE 24
PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE

STYLE 28:

PIN 1. SW_TO_GND
2. DASIC $\bar{O} F F$
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBULK
7. VBULK
8. VIN

| DOCUMENT NUMBER: | 98ASB42564B | Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |
| :---: | :---: | :---: |
| DESCRIPTION: | SOIC-8 NB | PAGE 2 OF 2 |

ON Semiconductor and (0N) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the disclaims any and
rights of others.

Micro8
CASE 846A-02
ISSUE K
DATE 16 JUL 2020
SCALE 2:1

NDTES:

1. DIMENSIDNING AND TZLERANCING PER ASME Y14.5M, 2009.
2. CINTRZLLING DIMENSIDN: MILLIMETERS
3. DIMENSIUN b DUES NDT INCLUDE DAMBAR PRDTRUSIDN ALLIWABLE PRITRUSIDN SHALL BE 0.10 mm IN EXCESS DF MAXIMUM MATERIAL CINDITIDN.
4. DIMENSIUNS D AND E DD NDT INCLUDE MLLD FLASH, PRDTRUSIDr GR GATE BURRS, MDLD FLASH, PRDTRUSIUNS, $\square R ~ G A T E ~ B U R R S ~$ SHALL NDT EXCEED 0.15 mm PER SIDE. DIMENSIDN E DDES NDT INCLUDE INTERLEAD FLASH $\square R$ PRITRUSIDN. INTERLEAD FLASH IR PRITRUSIDN SHALL NDT EXCEED 0.25 mm PER SIDE DIMENSIINS D AND E ARE DETERMINED AT DATUM F.
5. DATUMS A AND B ARE TV BE DETERMINED AT DATUM F
6. A1 IS DEFINED AS THE VERTICAL DISTANCE FRIM THE SEATING PLANE Tロ THE LIWEST PDINT UN THE PACKAGE BGDY.

END VIEW

0.65

PITCH ${ }^{-}$
RECDMMENDED MDUNTING FIDTPRINT

| DIM | MILLIMETERS | | |
| :---: | :---: | :---: | :---: |
| | MIN. | NDM. | MAX. |
| A | --- | --- | 1.10 |
| A1 | 0.05 | 0.08 | 0.15 |
| b | 0.25 | 0.33 | 0.40 |
| C | 0.13 | 0.18 | 0.23 |
| D | 2.90 | 3.00 | 3.10 |
| E | 2.90 | 3.00 | 3.10 |
| e | 0.65 BSC | | |
| H_{E} | 4.75 | 4.90 | 5.05 |
| L | 0.40 | 0.55 | 0.70 |

XXXX = Specific Device Code
A = Assembly Location
Y = Year
W = Work Week

- $\quad=\mathrm{Pb}-$ Free Package

| STYLE 1: | STYLE 2. | STYLE 3: |
| :---: | :---: | :---: |
| PIN 1. SOURCE | PIN 1. SOURCE 1 | PIN 1. N-SOURCE |
| 2. SOURCE | 2. GATE 1 | 2. N-GATE |
| 3. SOURCE | 3. SOURCE 2 | 3. P-SOURCE |
| 4. GATE | 4. GATE 2 | 4. P-GATE |
| 5. DRAIN | 5. DRAIN 2 | 5. P-DRAIN |
| 6. DRAIN | 6. DRAIN 2 | 6. P-DRAIN |
| 7. DRAIN | 7. DRAIN 1 | 7. N-DRAIN |
| 8. DRAIN | 8. DRAIN 1 | 8. N-DRAIN |

(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-F r e e$ indicator, " G " or microdot " "", may or may not be present. Some products may not follow the Generic Marking
8. DRAIN
2. GATE 1 3. SOURCE 2
4. GATE 2 5. DRAIN 2 7. DRAIN 2 8. DRAIN 1

PIN 1. N-SOURCE 2. N-GATE . P-SOURCE
4. P-GATE
5. P-DRAIN
6. P-DRAIN
8. N-DRAIN

| DOCUMENT NUMBER: | 98ASB14087C | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | MICRO8 | PAGE 1 OF $\mathbf{1}$ |

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: \dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging

[^1]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

