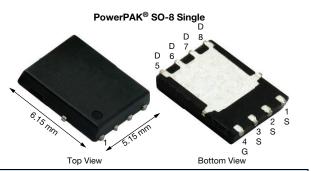
SiRA14BDP


www.vishay.com

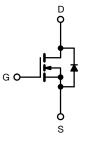
Vishay Siliconix

RoHS COMPLIANT

HALOGEN

FREE

PRODUCT SUMMARY 30 V_{DS} (V) $R_{DS(on)}$ max. (Ω) at $V_{GS} = 10$ V 0.00538 $R_{DS(on)}$ max. (Ω) at $V_{GS} = 4.5$ V 0.00702 Q_a typ. (nC) 6.6 64 I_D (A) a Configuration Single


FEATURES

N-Channel 30 V (D-S) MOSFET

- TrenchFET[®] Gen IV power MOSFET
- 100 % R_g and UIS tested
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- High power density DC/DC
- Synchronous rectification
- VRMs and embedded DC/DC

N-Channel MOSFET

ORDERING INFORMATION	
Package	PowerPAK SO-8
Lead (Pb)-free and halogen-free	SiRA14BDP-T1-GE3

ABSOLUTE MAXIMUM RATINGS	(T _A = 25 °C, unless	s otherwise no [.]	ted)		
PARAMETER		SYMBOL	LIMIT	UNIT	
Drain-source voltage		V _{DS}	30	V	
Gate-source voltage		V _{GS}	+20, -16		
	T _C = 25 °C		64		
Continuous drain current (T_{1} = 150 °C)	T _C = 70 °C		52		
Continuous drain current $(1_j = 150^{\circ} C)$	T _A = 25 °C	I _D	21 ^{b, c}		
	T _A = 70 °C		16 ^{b, c}	А	
Pulsed drain current (t = 100 µs)		I _{DM}	130	A	
Continuous source-drain diode current	T _C = 25 °C		33		
Continuous source-drain diode current	T _A = 25 °C	I _S	3.3 ^{b, c}		
Single pulse avalanche current	L = 0.1 mH	I _{AS}	15		
Single pulse avalanche energy		E _{AS}	11.3	mJ	
	T _C = 25 °C		36		
Movimum power discinction	T _C = 70 °C		23	W	
Maximum power dissipation	T _A = 25 °C P _D 3.7 b, c	3.7 ^{b, c}	vv		
	T _A = 70 °C		2.4 ^{b, c}		
Operating junction and storage temperature ran	nge	T _J , T _{stg}	-55 to +150	°C	
Soldering recommendations (peak temperature	e) d, e	-	260	C	

THERMAL RESISTANCE RATINGS					
PARAMETER		SMYBOL	TYPICAL	MAXIMUM	UNIT
Maximum junction-to-ambient ^{b, f}	t ≤ 10 s	R _{thJA}	28	34	°C/W
Maximum junction-to-case (drain)	Steady state	R _{thJC}	2.7	3.5	0/11

Notes a. Based on T_C = 25 $^\circ C$

b. Surface mounted on 1" x 1" FR4 board

t = 10 s c.

See solder profile (<u>www.vishay.com/doc?73257</u>). The PowerPAK SO-8 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection d.

Rework conditions: manual soldering with a soldering iron is not recommended for leadless components Maximum under steady state conditions is 72 °C/W e.

f.

S18-0993-Rev. A, 01-Oct-2018

1

SiRA14BDP

www.vishay.com

Vishay Siliconix

1 <u> </u>						
V _{DS}	$V_{GS} = 0 V, I_{D} = 250 \mu A$	30	-	-		
V _{DSt}	V_{GS} = 0 V, $I_{D(aval)}$ = 40 A, $t_{transcient} \le 50 \text{ ns}$	36	-	-	V	
$\Delta V_{DS}/T_{J}$		-	15.2	-		
	I _D = 250 μA	-	-4.7	-	mV/°(
	$V_{DS} = V_{GS}, I_{D} = 250 \ \mu A$	1.1	-	2.2	V	
		-	-	± 100	nA	
		-	-	1		
IDSS		-	-	10	μA	
D(on)		30	-	-	А	
D(01)		-	0.00370	0.00538		
R _{DS(on)}		-	0.00540	0.00702	Ω	
Qfe		-	65	-	S	
315		1		I	<u> </u>	
Ciec		-	917]		
		_	-	_	pF	
	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$		- <u>389</u> - - <u>37</u> - - <u>0.04</u> <u>0.08</u> - <u>14</u> <u>22</u>			
0155				0.08		
	$V_{DS} = 15 V V_{CS} = 10 V I_{D} = 10 A$					
Qg		-			nC	
Q _{aa}	$V_{DS} = 15 V_{.} V_{CS} = 4.5 V_{.} I_{D} = 10 A$	-		-		
				-		
	$V_{DC} = 15 V V_{CC} = 0 V$			-		
				56	Ω	
	1 = 1 10112				32	
			-		-	
			-		-	
			-			
					ns	
			-		-	
			10	20		
	T ₂ = 25 °C	1		22		
	IC = 20 C		-		Α	
	1 - 10 4		- 0.77		V	
	I _S = 10 A					
					ns	
	$I_F = 10 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$			20	nC	
t _a t _b	$I_{\rm J} = 25 {}^{-}{\rm G}$	-	10 10	-	ns	
	ΔV _{DS} /T _J ΔV _{GS} (th)/T _J V _{GS} (th) I _{GSS} I _{DSS} I _{D(on)} R _{DS(on)} Gfs C _{iss} C _{oss} C _{rss}	$\begin{tabular}{ c c c c } \hline v_{DSt} & t_{transcient} \leq 50 \text{ ns} \\ \hline t_{VOS}(T_J & I_D = 250 \ \mu\text{A} \\ \hline V_{GS(th)}/T_J & V_{DS} = V_{GS}, I_D = 250 \ \mu\text{A} \\ \hline I_{GSS} & V_{DS} = 0 \ V, \ V_{GS} = 0 \ V, \ V_{DS} = 30 \ V, \ V_{GS} = 0 \ V \\ \hline V_{DS} = 30 \ V, \ V_{GS} = 0 \ V, \ T_J = 55 \ ^{\circ}\text{C} \\ \hline I_{D(on)} & V_{DS} \geq 5 \ V, \ V_{GS} = 10 \ V \\ \hline V_{DS} = 30 \ V, \ I_D = 10 \ \text{A} \\ \hline V_{DS} = 10 \ V, \ I_D = 10 \ \text{A} \\ \hline V_{GS} = 4.5 \ V, \ I_D = 8 \ \text{A} \\ g_{fs} & V_{DS} = 10 \ V, \ I_D = 20 \ \text{A} \\ \hline \hline \\ \hline \hline \\ $	$\begin{tabular}{ c c c c c } \hline V_{DSt} & I_{transcient} \leq 50 \text{ ns} & 30 \\ \hline \Delta V_{DS}/T_J & I_D = 250 \ \mu A & - \\ \hline \Delta V_{GS(th)}/T_J & V_{DS} = V_{GS}, \ I_D = 250 \ \mu A & 1.1 \\ \hline I_{GSS} & V_{DS} = 0 \ V, \ V_{GS} = +20, -16 \ V & - \\ \hline V_{DS} = 30 \ V, \ V_{GS} = 0 \ V & - \\ \hline V_{DS} = 30 \ V, \ V_{GS} = 0 \ V & - \\ \hline V_{DS} = 30 \ V, \ V_{GS} = 0 \ V & T_J = 55 \ ^{\circ}\text{C} & - \\ \hline I_{D(on)} & V_{DS} \geq 5 \ V, \ V_{GS} = 10 \ V & 30 \\ \hline V_{GS} = 10 \ V, \ I_D = 10 \ A & - \\ \hline V_{DS} = 30 \ V, \ V_{GS} = 10 \ V, \ I_D = 10 \ A & - \\ \hline V_{DS} = 30 \ V, \ V_{GS} = 10 \ V, \ I_D = 20 \ A & - \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	

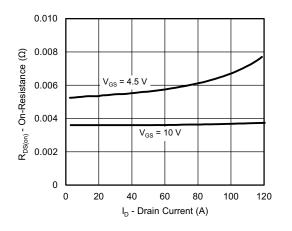
Notes

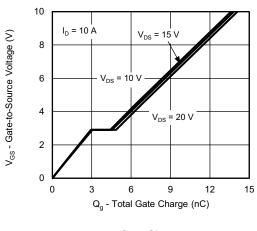
a. Pulse test: pulse width $\leq 300~\mu\text{s},\,duty~cycle \leq 2~\%$

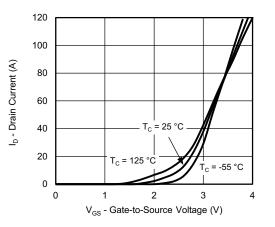
b. Guaranteed by design, not subject to production testing

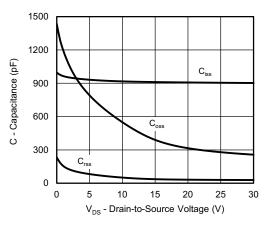
c. Based on characterization, not subject to production testing

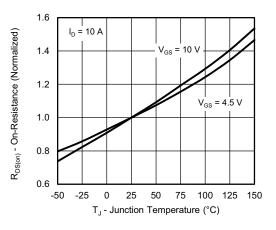
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.


2


TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Output Characteristics


On-Resistance vs. Drain Current

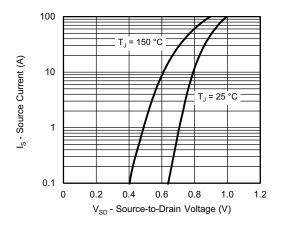

Gate Charge

Transfer Characteristics

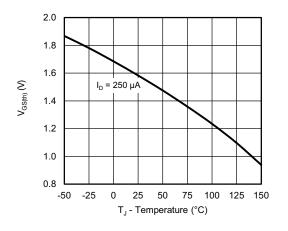
Capacitance

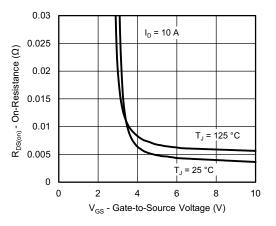
On-Resistance vs. Junction Temperature

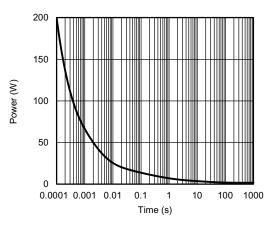
3

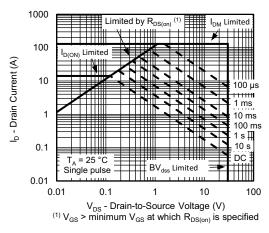

Document Number: 76789

For technical questions, contact: <u>pmostechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>


S18-0993-Rev. A, 01-Oct-2018

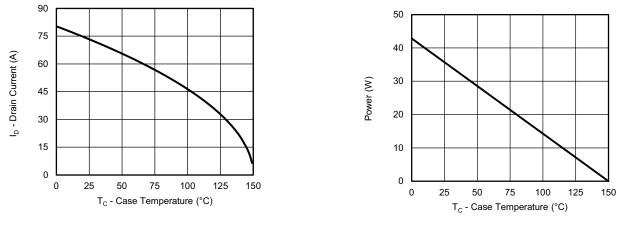

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Source-Drain Diode Forward Voltage


Threshold Voltage

On-Resistance vs. Gate-to-Source Voltage

Single Pulse Power, Junction-to-Ambient

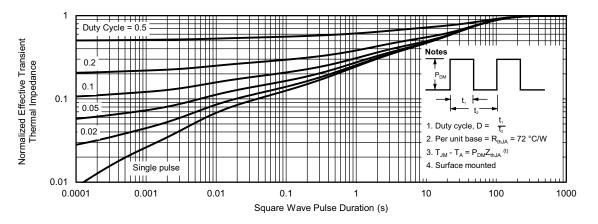

Safe Operating Area

4

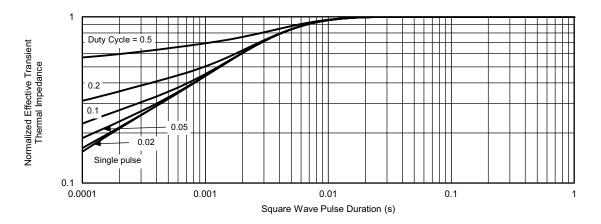
For technical questions, contact: <u>pmostechsupport@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Current Derating ^a


Power, Junction-to-Case

Note


a. The power dissipation P_D is based on T_J max. = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit

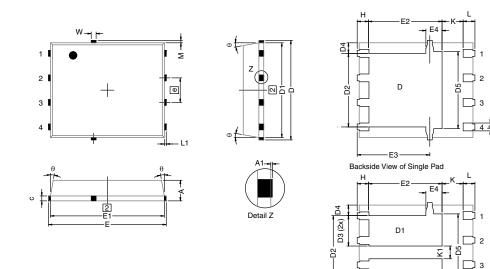
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

Normalized Thermal Transient Impedance, Junction-to-Ambient

Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package / tape drawings, part marking, and reliability data, see www.vishay.com/ppg?76789.

D2


E3

Backside View of Dual Pad

Vishay Siliconix

PowerPAK[®] SO-8, (Single/Dual)

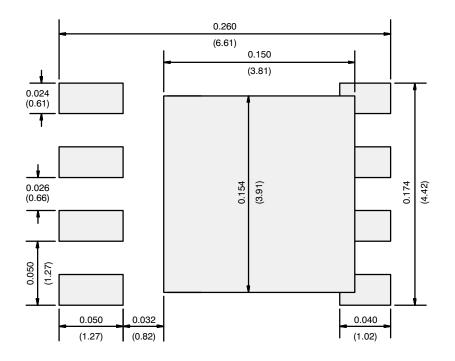
Notes

1. Inch will govern.

2 Dimensions exclusive of mold gate burrs.

3. Dimensions exclusive of mold flash and cutting burrs.

DIM.		MILLIMETERS			INCHES			
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX		
А	0.97	1.04	1.12	0.038	0.041	0.044		
A1		-	0.05	0	-	0.00		
b	0.33	0.41	0.51	0.013	0.016	0.02		
С	0.23	0.28	0.33	0.009	0.011	0.01		
D	5.05	5.15	5.26	0.199	0.203	0.20		
D1	4.80	4.90	5.00	0.189	0.193	0.19		
D2	3.56	3.76	3.91	0.140	0.148	0.154		
D3	1.32	1.50	1.68	0.052	0.059	0.066		
D4		0.57 typ.		0.0225 typ.				
D5		3.98 typ.			0.157 typ.			
E	6.05	6.15	6.25	0.238	0.242	0.246		
E1	5.79	5.89	5.99	0.228	0.232	0.23		
E2	3.48	3.66	3.84	0.137	0.144	0.15		
E3	3.68	3.78	3.91	0.145	0.149	0.154		
E4		0.75 typ.			0.030 typ.			
е		1.27 BSC			0.050 BSC			
К		1.27 typ.			0.050 typ.			
K1	0.56	-	-	0.022	-	-		
Н	0.51	0.61	0.71	0.020	0.024	0.028		
L	0.51	0.61	0.71	0.020	0.024	0.028		
L1	0.06	0.13	0.20	0.002	0.005	0.008		
θ	0°	-	12°	0°	-	12°		
W	0.15	0.25	0.36	0.006	0.010	0.014		
М		0.125 typ. 0.005 typ.						


1

Application Note 826

Vishay Siliconix

RECOMMENDED MINIMUM PADS FOR PowerPAK® SO-8 Single

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.