Split T-Type NPC Power Module

1200 V, 160 A IGBT, 600 V, 100 A IGBT

The NXH160T120L2Q2F2SG is a power module containing a split T- type neutral point clamped three-level inverter, consisting of two 160 A / 1200 V Half Bridge IGBTs with inverse diodes, two Neutral Point 120 A / 600 V rectifiers, two 100 A / 600 V Neutral Point IGBTs with inverse diodes, two Half Bridge 60 A / 1200 V rectifiers and a negative temperature coefficient thermistor (NTC).

Features

- Split T-type Neutral Point Clamped Three-level Inverter Module
- 1200 V IGBT Specifications: $V_{CE(SAT)} = 2.15$ V, $E_{SW} = 4300 \mu J$
- 600 V IGBT specifications: $V_{CE(SAT)} = 1.47$ V, $E_{SW} = 2560 \mu J$
- Baseplate
- Solderable Pins
- Thermistor

Typical Applications

- Solar Inverters
- Uninterruptible Power Supplies

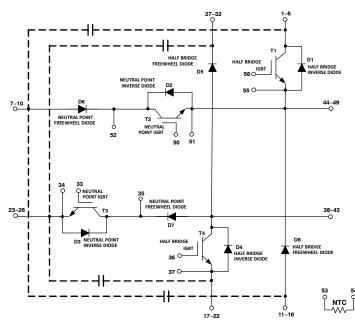
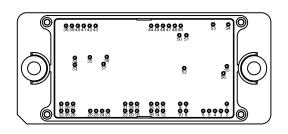



Figure 1. NXH160T120L2Q2F2SG Schematic Diagram

ON Semiconductor®

www.onsemi.com


CASE 180AK

NXH160T120L2Q2F2SG = Device Code YYWW = Year and Work Week Code

- A = Assembly Site Code
- T = Test Site Code
- G = Pb-Free Package

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

Table 1. ABSOLUTE MAXIMUM RATINGS (Note 1) T_J = 25°C unless otherwise noted

Rating	Symbol	Value	Unit
HALF BRIDGE IGBT			-
Collector-Emitter Voltage	V _{CES}	1200	V
Gate-Emitter Voltage	V _{GE}	±20	V
Continuous Collector Current @ $T_h = 80^{\circ}C$ ($T_J = 175^{\circ}C$)	Ι _C	181	А
Pulsed Collector Current ($T_J = 175^{\circ}C$)	I _{Cpulse}	543	А
Maximum Power Dissipation @ $T_h = 80^{\circ}C (T_J = 175^{\circ}C)$	P _{tot}	500	W
Short Circuit Withstand Time @ V_{GE} = 15 V, V_{CE} = 600 V, T_J \leq 150°C	T _{sc}	5	μs
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	150	°C
NEUTRAL POINT IGBT			
Collector-Emitter Voltage	V _{CES}	600	V
Gate-Emitter Voltage	V _{GE}	±20	V
Continuous Collector Current @ T _h = 80°C (T _J = 175°C)	۱ _C	116	А
Pulsed Collector Current (T _J = 175°C)	I _{Cpulse}	348	А
Maximum Power Dissipation @ $T_h = 80^{\circ}C (T_J = 175^{\circ}C)$	P _{tot}	232	W
Short Circuit Withstand Time @ V_{GE} = 15 V, V_{CE} = 400 V, T_J \leq 150°C	T _{sc}	5	μs
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	150	°C
HALF BRIDGE FREEWHEEL DIODE			
Peak Repetitive Reverse Voltage	V _{RRM}	1200	V
Continuous Forward Current @ T _h = 80°C (T _J = 175°C)	۱ _F	56	А
Repetitive Peak Forward Current (T_J = 175°C, t_p limited by T_{Jmax})	I _{FRM}	150	A
Maximum Power Dissipation @ $T_h = 80^{\circ}C (T_J = 175^{\circ}C)$	P _{tot}	142	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	150	°C
HALF BRIDGE INVERSE DIODE			
Peak Repetitive Reverse Voltage	V _{RRM}	1200	V
Continuous Forward Current @ T _h = 80°C (T _J = 175°C)	١ _F	19	A
Repetitive Peak Forward Current ($T_J = 175^{\circ}C$, t_p limited by T_{Jmax})	I _{FRM}	50	A
Maximum Power Dissipation @ $T_h = 80^{\circ}C (T_J = 175^{\circ}C)$	P _{tot}	63	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	150	°C
NEUTRAL POINT FREEWHEEL DIODE			
Peak Repetitive Reverse Voltage	V _{RRM}	600	V
Continuous Forward Current @ T _h = 80°C (T _J = 175°C)	۱ _F	132	A
Repetitive Peak Forward Current (T _J = $175^{\circ}C$, t _p limited by T _{Jmax})	I _{FRM}	300	A
Maximum Power Dissipation @ T _h = 80°C (T _J = 175°C)	P _{tot}	198	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	150	°C
Peak Repetitive Reverse Voltage	V _{RRM}	600	V
Continuous Forward Current @ T _h = 80°C (T _J = 175°C)	I _F	38	A
Repetitive Peak Forward Current ($T_J = 175^{\circ}C$, t_p limited by T_{Jmax})	I _{FRM}	110	A
Maximum Power Dissipation @ $T_h = 80^{\circ}C (T_J = 175^{\circ}C)$	P _{tot}	79	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C

Table 1. ABSOLUTE MAXIMUM RATINGS (Note 1) T_J = 25°C unless otherwise noted

Rating	Symbol	Value	Unit	
NEUTRAL POINT INVERSE DIODE				
Maximum Operating Junction Temperature	T _{JMAX}	150	°C	
THERMAL PROPERTIES				
Storage Temperature range	T _{stg}	-40 to 125	°C	
INSULATION PROPERTIES				
Isolation test voltage, t = 1 sec, 60Hz	V _{is}	3000	V _{RMS}	
Creepage distance		12.7	mm	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe

Operating parameters.

Table 2. RECOMMENDED OPERATING RANGES

Rating	Symbol	Min	Max	Unit
Module Operating Junction Temperature	TJ	-40	(T _{jmax} –25)	°C

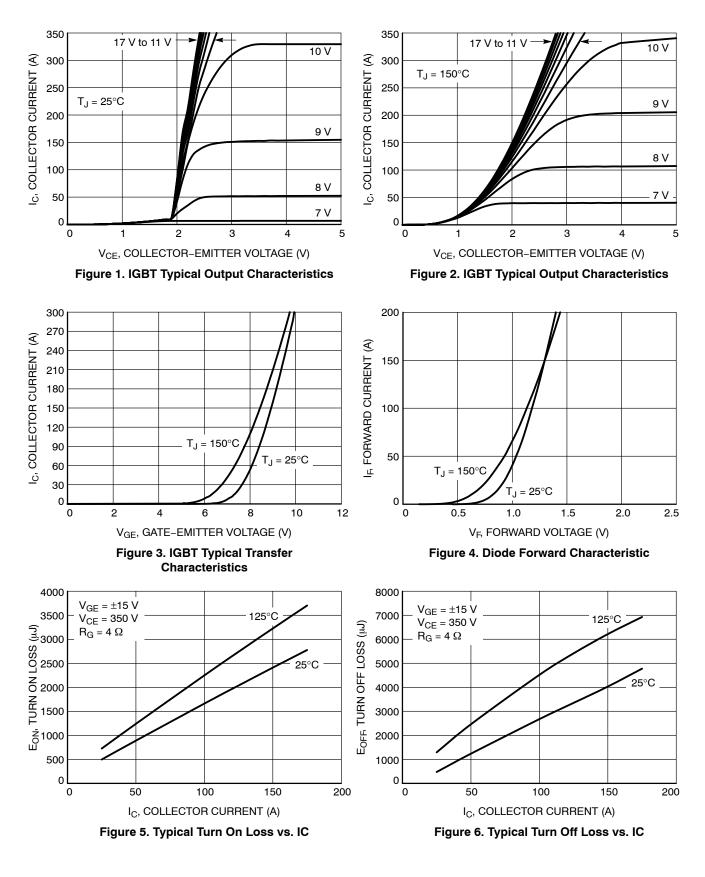
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 3. ELECTRICAL CHARACTERISTICS T_J = 25°C unless otherwise noted

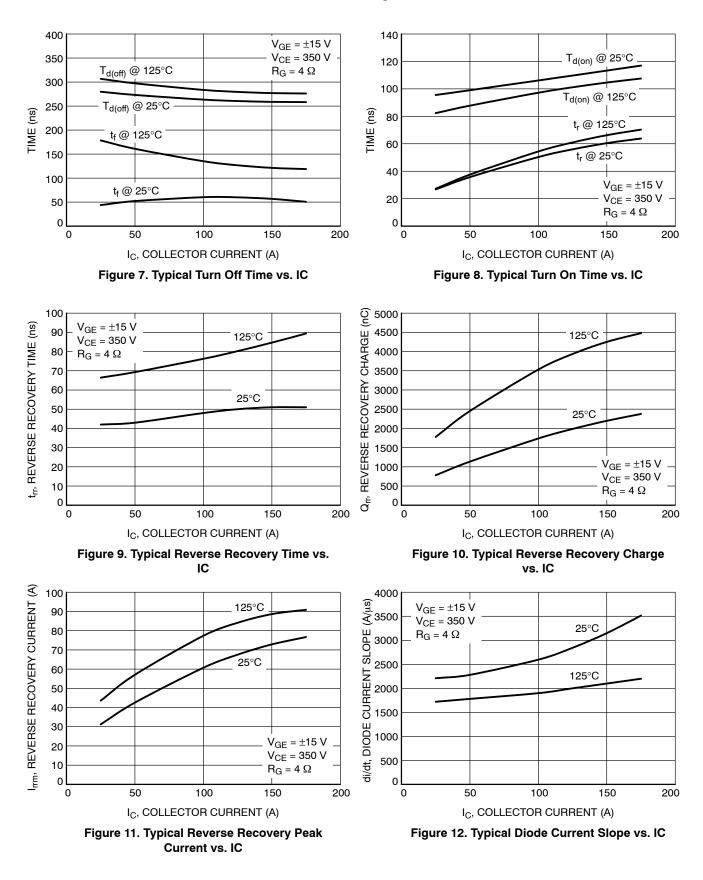
Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
HALF BRIDGE IGBT CHARACTERISTICS	3					
Collector-Emitter Cutoff Current	V _{GE} = 0 V, V _{CE} = 1200 V	I _{CES}	-	-	500	μA
Collector-Emitter Saturation Voltage	V_{GE} = 15 V, I _C = 160 A, T _J = 25°C	V _{CE(sat)}	-	2.15	2.7	V
	V_{GE} = 15 V, I _C = 160 A, T _J = 150°C		-	2.08	-	
Gate-Emitter Threshold Voltage	$V_{GE} = V_{CE}$, $I_C = 6$ mA	V _{GE(TH)}	-	5.53	6.4	V
Gate Leakage Current	V_{GE} = 20 V, V_{CE} = 0 V	I _{GES}	-	-	500	nA
Turn-on Delay Time	$T_{\rm J} = 25^{\circ} \rm C$	t _{d(on)}	-	105	_	ns
Rise Time	$V_{CE} = 350 \text{ V}, \text{ I}_{C} = 100 \text{ A}$ $V_{CE} = \pm 15 \text{ V}, \text{ R}_{C} = 4 \Omega$	t _r	-	50	_	
Turn-off Delay Time		t _{d(off)}	-	270	_	
Fall Time	7	t _f	-	55	_	
Turn-on Switching Loss per Pulse	7	Eon	-	1700	_	μJ
Turn off Switching Loss per Pulse		E _{off}	-	2600	-	
Turn-on Delay Time	T _J = 125°C	t _{d(on)}	-	95	_	ns
Rise Time	V_{CE} = 350 V, I_C = 100 A V_{GE} = ±15 V, R_G = 4 Ω	t _r	-	55	_	
Turn-off Delay Time		t _{d(off)}	-	285	_	
Fall Time	7	t _f	-	150	_	
Turn-on Switching Loss per Pulse	7	Eon	-	2300	_	μJ
Turn off Switching Loss per Pulse	7	E _{off}	-	4600	_	
Input Capacitance	V_{CE} = 25 V. V_{GE} = 0 V. f = 10 kHz	C _{ies}	-	38800	-	pF
Output Capacitance	7	C _{oes}	-	800	-	
Reverse Transfer Capacitance	7	C _{res}	-	680	-	1
Total Gate Charge	V_{CE} = 600 V, I _C = 160 A, V _{GE} = 15 V	Qg	-	1600	-	nC
Thermal Resistance – chip-to-heatsink	Thermal grease, Thickness < 100 $\mu m,$ λ = 0.84 W/mK	R _{thJH}	_	0.19	-	°C/W

Table 3. ELECTRICAL CHARACTERISTICS T_J = 25°C unless otherwise noted

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
NEUTRAL POINT FREEWHEEL DIODE C	HARACTERISTICS				-	-
Diode Reverse Leakage Current	V _R = 600 V	I _R	-	-	100	μA
Diode Forward Voltage	I _F = 120 A, T _J = 25°C	V _F	-	1.24	1.5	V
	I _F = 120 A, T _J = 150°C		-	1.20	_	
Reverse Recovery Time	$T_J = 25^{\circ}C$	t _{rr}	-	50	-	ns
Reverse Recovery Charge	V_{CE} = 350 V, I _C = 100 A V _{GE} = ±15 V, R _G = 4 Ω	Q _{rr}	-	1700	-	nC
Peak Reverse Recovery Current		I _{RRM}	-	59	-	А
Peak Rate of Fall of Recovery Current	1	di/dt	-	2500	-	A/μs
Reverse Recovery Energy	1	E _{rr}	-	380	-	μJ
Reverse Recovery Time	T _J = 125°C	t _{rr}	-	77	_	ns
Reverse Recovery Charge	V_{CE} = 350 V, I _C = 100 A V _{GE} = ±15 V, R _G = 4 Ω	Q _{rr}	-	3600	-	nC
Peak Reverse Recovery Current		I _{RRM}	-	77	_	Α
Peak Rate of Fall of Recovery Current	1	di/dt	-	1900	-	A/μs
Reverse Recovery Energy	1	E _{rr}	_	780	_	μJ
Thermal Resistance - chip-to-heatsink	Thermal grease, Thickness < 100 μ m, λ = 0.84 W/mK	R _{thJH}	-	0.48	-	°C/W
NEUTRAL POINT IGBT CHARACTERIST	ics				1	
Collector-Emitter Cutoff Current	$V_{GE} = 0 V, V_{CE} = 600 V$	I _{CES}	-	-	300	μA
Collector-Emitter Saturation Voltage	V_{GE} = 15 V, I _C = 100 A, T _J = 25°C	V _{CE(sat)}	-	1.47	1.8	V
	V_{GE} = 15 V, I _C = 100 A, T _J = 150°C		-	1.50	-	
Gate-Emitter Threshold Voltage	$V_{GE} = V_{CE}, I_C = 1.2 \text{ mA}$	V _{GE(TH)}	-	5.30	6.4	V
Gate Leakage Current	V _{GE} = 20 V, V _{CE} = 0 V	I _{GES}	-	-	300	nA
Turn-on Delay Time	$T_J = 25^{\circ}C$	t _{d(on)}	-	50	-	ns
Rise Time	V_{CE} = 350 V, I _C = 100 A V _{GE} = ±15 V, R _G = 4 Ω	t _r	-	35	_	
Turn-off Delay Time		t _{d(off)}	-	135	-	
Fall Time	1	t _f	-	40	-	
Turn-on Switching Loss per Pulse	-	E _{on}	-	870	-	μJ
Turn off Switching Loss per Pulse	-	E _{off}	-	1690	_	
Turn-on Delay Time	T _J = 125°C	t _{d(on)}	-	50	-	ns
Rise Time	V _{CE} = 350 V, I _C = 100 A V _{GE} = ±15 V, R _G = 4 Ω	t _r	_	37	-	
Turn-off Delay Time	VGE - ±13 V, HG - + 32	t _{d(off)}	-	145	-	
Fall Time	1	t _f	-	65	_	
Turn-on Switching Loss per Pulse	-	Eon	-	1300	_	μJ
Turn off Switching Loss per Pulse	1	E _{off}	-	2500	_	1
Input Capacitance	V _{CE} = 25 V, V _{GE} = 0 V, f = 10 kHz	C _{ies}	-	18800	_	pF
Output Capacitance	1	C _{oes}	-	560	_	
Reverse Transfer Capacitance	1	C _{res}	_	500	_	1
Total Gate Charge	V_{CE} = 480 V, I _C = 80 A, V _{GE} = 15 V	Qg	-	790	_	nC
Thermal Resistance – chip-to-heatsink	Thermal grease, Thickness < 100 μ m, $\lambda = 0.84$ W/mK	R _{thJH}	-	0.41	-	°C/W


Table 3. ELECTRICAL CHARACTERISTICS T_J = 25°C unless otherwise noted

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
HALF BRIDGE FREEWHEEL DIODE CHA	ARACTERISTICS	· ·		-		-
Diode Reverse Leakage Current	V _R = 1200 V	I _R	_	-	100	μA
Diode Forward Voltage	I _F = 60 A, T _J = 25°C	VF	_	2.63	3.3	V
	I _F = 60 A, T _J = 150°C		_	2.12	_	
Reverse Recovery Time	$T_J = 25^{\circ}C$	t _{rr}	-	320	-	ns
Reverse Recovery Charge	V_{CE} = 350 V, I _C = 100 A V _{GE} = ±15 V, R _G = 4 Ω	Q _{rr}	-	3700	-	nC
Peak Reverse Recovery Current		I _{RRM}	_	68	-	Α
Peak Rate of Fall of Recovery Current	1	di/dt	_	3000	_	A/μs
Reverse Recovery Energy	1	E _{rr}	_	1150	-	μJ
Reverse Recovery Time	T _J = 125°C	t _{rr}	_	520	-	ns
Reverse Recovery Charge	V_{CE} = 350 V, I_C = 100 A V_{GE} = ±15 V, R_G = 4 Ω	Q _{rr}	_	9000	-	nC
Peak Reverse Recovery Current		I _{RRM}	_	102	-	Α
Peak Rate of Fall of Recovery Current	1	di/dt	-	2600	-	A/μs
Reverse Recovery Energy	1	E _{rr}	_	2750	-	μJ
Thermal Resistance - chip-to-heatsink	Thermal grease, Thickness < 100 μ m, λ = 0.84 W/mK	R _{thJH}	-	0.67	-	°C/W
HALF BRIDGE INVERSE DIODE CHARA	CTERISTICS	•				
Diode Forward Voltage	I _F = 7 A, T _J = 25°C	V _F	-	1.92	2.80	V
	I _F = 7 A, T _J = 150°C – 1	1.37	-			
Thermal Resistance - chip-to-heatsink	Thermal grease, Thickness < 100 $\mu m,$ λ = 0.84 W/mK	R _{thJH}	-	1.52	-	°C/W
NEUTRAL POINT INVERSE DIODE CHAR	RACTERISTICS	•				
Diode Forward Voltage	I _F = 30 A, T _J = 25°C	VF	_	2.24	2.75	V
	I _F = 30 A, T _J = 150°C	- I	-	1.60	-	
Thermal Resistance - chip-to-heatsink	Thermal grease, Thickness 100 $\mu m,$ λ = 0.84 W/mK	R _{thJH}	-	1.21	-	°C/W
THERMISTOR CHARACTERISTICS	÷	•				
Nominal resistance		R ₂₅	-	22	-	kΩ
Nominal resistance	T = 100°C	R ₁₀₀	_	1486	-	Ω
Deviation of R25		$\Delta R/R$	-5	-	5	%
Power dissipation		PD	-	200	-	mW
Power dissipation constant			-	2	-	mW/K
B-value	B(25/50), tolerance ±3%		-	3950	-	К
B-value	B(25/100), tolerance ±3%		_	3998	_	к


ORDERING INFORMATION

Device	Marking	Package	Shipping
NXH160T120L2Q2F2SG Q2PACK	NXH160T120L2Q2F2SG	Q2PACK – Case 180AK (Pb-Free and Halide-Free)	12 Units / Blister Tray

TYPICAL CHARACTERISTICS – Half Bridge IGBT and Neutral Point Diode

TYPICAL CHARACTERISTICS – Half Bridge IGBT and Neutral Point Diode

TYPICAL CHARACTERISTICS – Half Bridge IGBT and Neutral Point Diode

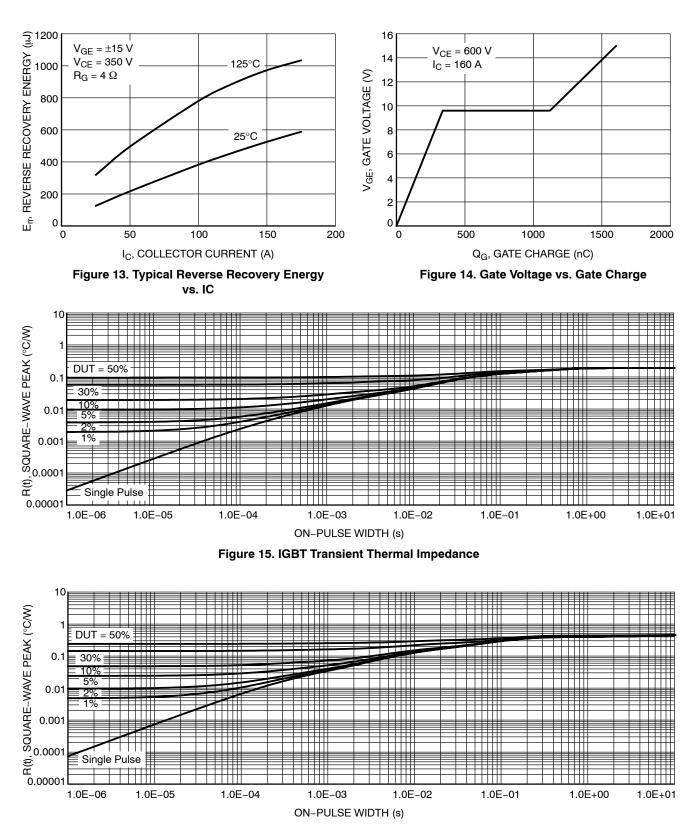
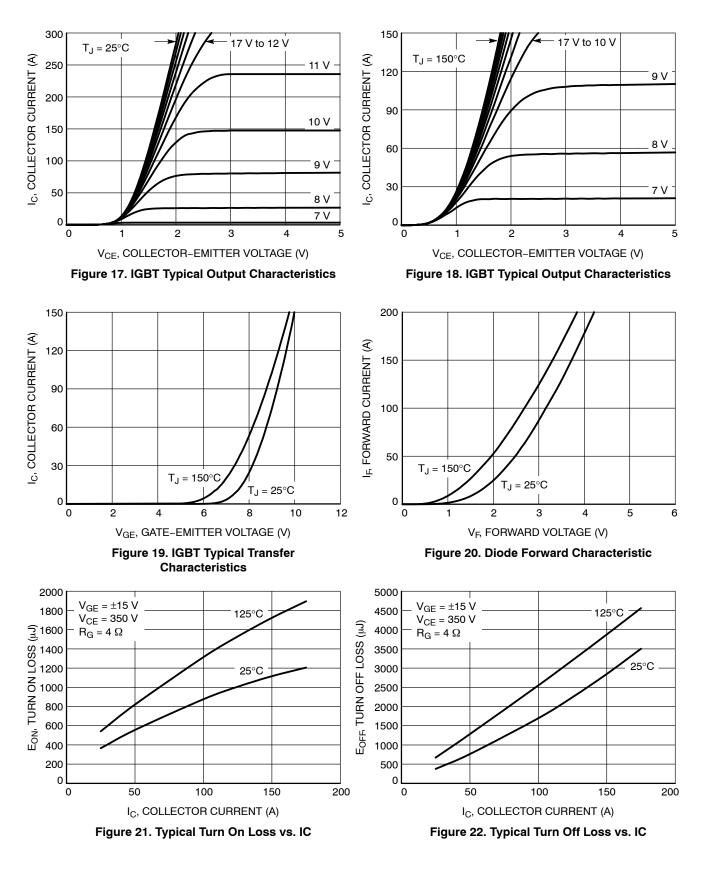
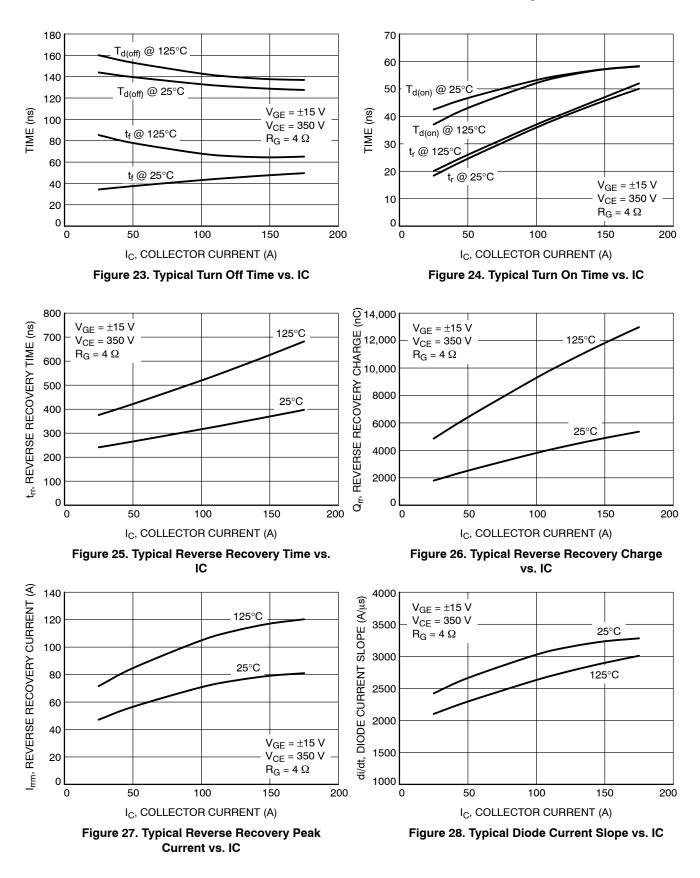
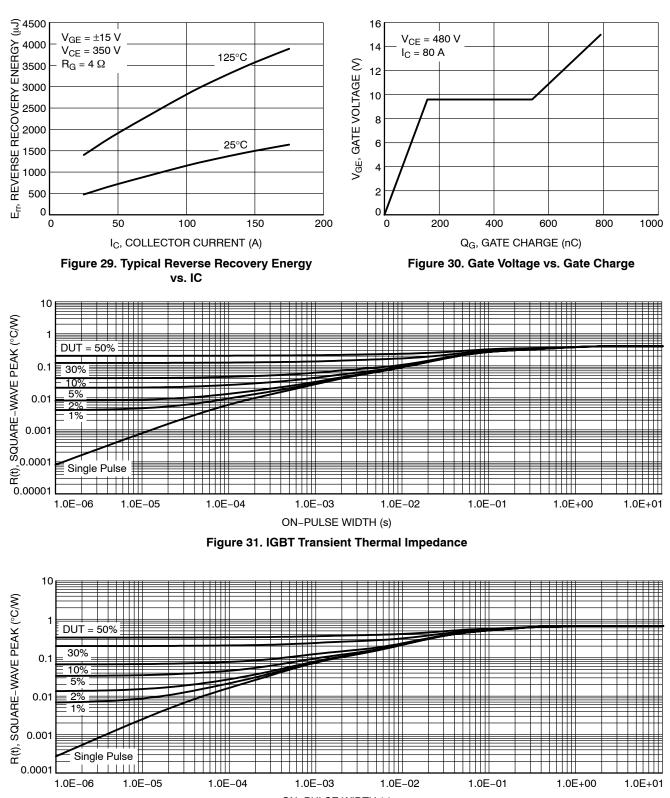
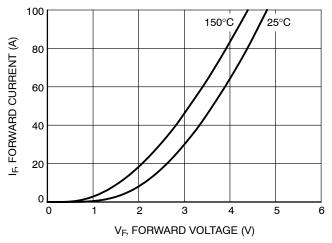




Figure 16. Diode Transient Thermal Impedance


TYPICAL CHARACTERISTICS – Neutral Point IGBT and Half Bridge Diode

TYPICAL CHARACTERISTICS – Neutral Point IGBT and Half Bridge Diode


TYPICAL CHARACTERISTICS – Neutral Point IGBT and Half Bridge Diode

ON-PULSE WIDTH (s)

Figure 32. Diode Transient Thermal Impedance

TYPICAL CHARACTERISTICS – Half Bridge IGBT Protection Diode

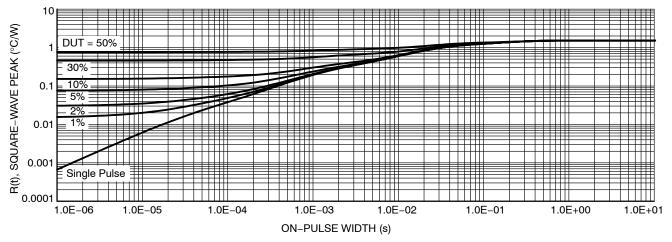
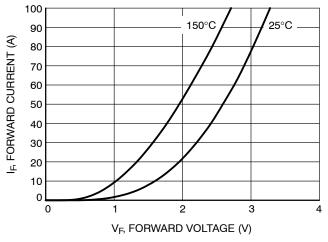
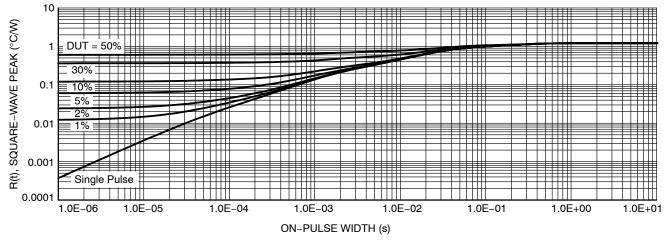
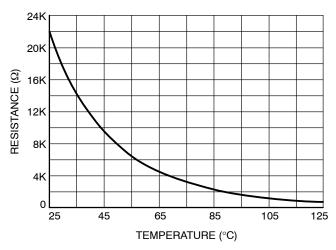
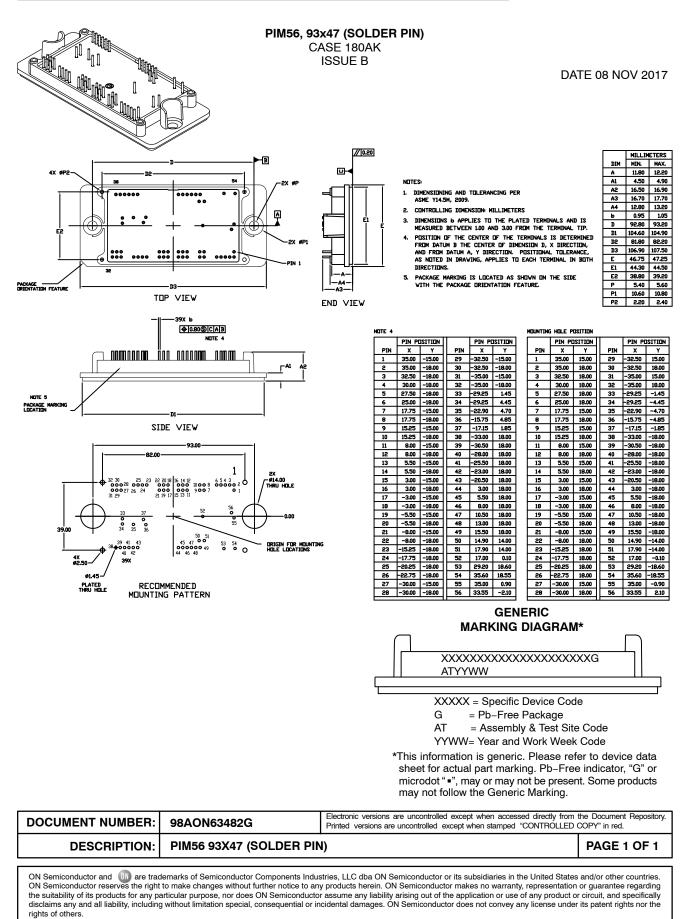




Figure 34. Diode Transient Thermal Impedance


TYPICAL CHARACTERISTICS – Neutral Point IGBT Protection Diode



TYPICAL CHARACTERISTICS – Thermistor

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative