Ruggedized Electrical Double Layer Energy Storage Capacitors Up to 3 V Operating Voltage

Image is not to scale

Fig. 1

QUICK REFERENCE DATA	
DESCRIPTION	VALUE
Nominal case sizes ($\varnothing \mathrm{D} \times \mathrm{L}$ in mm)	$\begin{gathered} 10 \times 20 ; 10 \times 25 ; 10 \times 30 ; \\ 12.5 \times 20 ; 12.5 \times 25 ; 12.5 \times 30 ; \\ 12.5 \times 40 ; 16 \times 20 ; 18 \times 20 ; \\ 16 \times 25 ; 18 \times 25 ; 16 \times 31 ; \\ 18 \times 31 ; 18 \times 35 ; 18 \times 40 ; 20 \times 40 \end{gathered}$
Rated capacitance range, C_{R}	5 F to 100 F
Rated voltage, U_{R} ($65^{\circ} \mathrm{C} / 85^{\circ} \mathrm{C}$)	$3.0 \mathrm{~V} / 2.6 \mathrm{~V}$
Category temperature range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Endurance test at $85{ }^{\circ} \mathrm{C}$	Up to 1500 h
Useful life at $85^{\circ} \mathrm{C}$	Up to 2000 h
Useful life at $20^{\circ} \mathrm{C}$	>10 years
Shelf life at $20^{\circ} \mathrm{C}$	2 years
Cycle life	> 500000 cycles

FEATURES

- Polarized energy storage capacitor with high capacity and energy density
- Rated voltage: 3.0 V
- Available in through-hole (radial) version

RoHS complant

- Useful life: up to 2000 h at $85^{\circ} \mathrm{C}$
- Ruggedized for high humidity operation
- Rapid charge and discharge
- Maintenance-free, no service necessary
- AEC-Q200 qualified
- UL 810A recognized
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

- Power backup
- Burst power support
- Storage device for energy harvesting
- Micro UPS power source
- Energy recovery

MARKING

The capacitors are marked (where possible) with the following information:

- Rated capacitance (in F)
- Rated voltage (in V)
- Date code, in accordance with IEC 60062
- Code indicating factory of origin
- Logo of manufacturer
- Negative terminal identification
- Series number (235)

PACKAGING

Supplied loose in box, taped ammo, or in ESD trays.

235 EDLC-HVR ENYCAPTM

SELECTION CHART FOR C_{R} AND RELEVANT NOMINAL CASE SIZES

$\mathbf{C}_{\mathbf{R}} \mathbf{(F)}$	$\mathbf{U}_{\mathbf{R}} \mathbf{(\mathbf { V }) = \mathbf { 3 . 0 } \mathbf { ~ V }} \mathbf{1 0 \times 2 0}$
5	10×25
7	12.5×20
8	10×30
10	12.5×25
12	12.5×30
15	16×20
20	12.5×40
22	$16 \times 25 ; 18 \times 20$
25	18×25
30	16×31
35	$\mathbf{1 8 \times 3 1}\left({ }^{(1)}\right.$
40	18×35
50	18×40
60	20×40

Note

(1) Preferred case size

DIMENSIONS in millimeters AND AVAILABLE FORMS

Fig. 2 - Form CA / TRAY: long leads

Fig. 3 - Form TFA: taped in box (ammopack)

Table 1
DIMENSIONS in millimeters, MASS, AND PACKAGING QUANTITIES

NOMINAL CASE SIZE Ø D x L	CASE CODE	Ø d	$\varnothing \mathrm{D}_{\text {max }}$	$L_{\text {max }}$	F	MASS (g)	PACKAGING QUANTITIES		
							FORM CA	FORM TFA	FORM TRAY
10×20	16	0.6	10.5	22	5.0 ± 0.5	≈ 2.2	500	800	-
10×25	16L	0.6	10.5	27	5.0 ± 0.5	≈ 3.0	500	800	-
10×30	16LL	0.8	10.5	32	5.0 ± 0.5	≈ 3.5	500	800	-
12.5×20	17	0.6	13.0	22	5.0 ± 0.5	≈ 4.0	500	500	-
12.5×25	18	0.6	13.0	27	5.0 ± 0.5	≈ 5.0	250	500	-
12.5×30	18L	0.8	13.0	33.5	5.0 ± 0.5	≈ 5.5	250	500	-
12.5×40	18LL	0.8	13.0	42.5	5.0 ± 0.5	≈ 7.0	250	-	-
16×20	19a	0.8	16.5	22	7.5 ± 0.5	≈ 6.0	250	250	200
16×25	19	0.8	16.5	27	7.5 ± 0.5	≈ 8.0	250	250	200
18×20	1820	0.8	18.5	22	7.5 ± 0.5	≈ 7.0	100	250	200
18×25	1825	0.8	18.5	27	7.5 ± 0.5	≈ 10.0	100	250	200
16×31	20	0.8	16.5	33.5	7.5 ± 0.5	≈ 9.0	100	250	200
18×31	1831	0.8	18.5	33.5	7.5 ± 0.5	≈ 12.5	100	250	200
18×35	22	0.8	18.5	37.5	7.5 ± 0.5	≈ 14.5	100	250	200
18×40	1840	0.8	18.5	42.5	7.5 ± 0.5	≈ 16.5	100	-	150
20×40	2040	1.0	20.5	43.5	7.5 ± 0.5	≈ 20.0	100	-	-

235 EDLC-HVR ENYCAPTM

ELECTRICAL DATA	
SYMBOL	DESCRIPTION
C_{R}	Rated capacitance, tolerance $-20 \% /+50 \%$
I_{P}	Max. peak current
I_{L}	Max. leakage current after $0.5 \mathrm{~h} / 72 \mathrm{~h}$ at U_{R}

Note

- Unless otherwise specified, all electrical values in Table 2 apply at $\mathrm{T}_{\mathrm{amb}}=20^{\circ} \mathrm{C}, \mathrm{P}=86 \mathrm{kPa}$ to 106 kPa and $\mathrm{RH}=45 \%$ to 75%

ORDERING EXAMPLE

Capacitor series 235 EDLC-HVR
40 F / 3.0 V
Nominal case size: $\varnothing 18 \mathrm{~mm} \times 31 \mathrm{~mm}$; Form TRAY Ordering code: MAL223591001E3

Table 2
ELECTRICAL DATA AND ORDERING INFORMATION

$\begin{aligned} & U_{\mathrm{R}} \\ & \text { (V) } \end{aligned}$	$\begin{gathered} \mathrm{U}_{\mathrm{MT}}(\mathrm{~V}) \end{gathered}$	$\begin{gathered} U_{C T}(2) \\ (V) \end{gathered}$		$\underset{(F)}{C_{R}(3)}$	$\begin{gathered} \text { NOMINAL } \\ \text { CASE SIZE } \\ \text { ØD } x \text { L } \end{gathered}$	MAX. $E_{S_{D C}}{ }^{(3)}$ INITIAL	MAX. ESR $_{\text {AC }}$ 1 kHz	IPMAX.PEAKCURRENT(A)			$\begin{gathered} \hline \text { STORED } \\ \text { ENERGY } \\ \text { E ATU UR } \\ \text { (Wh) } \end{gathered}$		SPECIFIC ENERGY Ed AT U (Wh/kg)		ORDERING CODE MAL2235.......		
$65^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$						$65^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$		$65{ }^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	65°	$85^{\circ} \mathrm{C}$	$\underset{\text { CA }}{\text { FORM }}$	$\begin{aligned} & \text { FORM } \\ & \text { TFA } \end{aligned}$	FORM TRAY
3.0	2.8	2.6	3.15	5	10×20	45	32	12	10	25	0.006	0.005	2.8	2.1	51011E3	31011 E3	-
3.0	2.8	2.6	3.15	7	10×25	40	28	12	10	35	0.009	0.007	2.9	2.2	51012E3	31012E3	-
3.0	2.8	2.6	3.15	8	12.5×20	42	25	15	12	40	0.010	0.008	2.5	1.9	51014E3	31014E3	-
3.0	2.8	2.6	3.15	10	10×30	31	24	15	12	45	0.013	0.009	3.6	2.7	51013E3	31013E3	-
3.0	2.8	2.6	3.15	12	12.5×25	34	23	17	14	55	0.015	0.011	3.0	2.3	51015E3	31015E3	-
3.0	2.8	2.6	3.15	15	12.5×30	27	20	20	17	70	0.019	0.014	3.4	2.6	51016E3	31016E3	-
3.0	2.8	2.6	3.15	20	16×20	28	22	25	20	75	0.025	0.019	4.2	3.1	51003E3	31003E3	91003E3
3.0	2.8	2.6	3.15	22	12.5×40	22	15	25	20	75	0.028	0.021	3.9	3.0	51017E3	-	-
3.0	2.8	2.6	3.15	25	16×25	26	20	25	20	75	0.031	0.023	3.9	2.9	51006E3	31006 E 3	91006E3
3.0	2.8	2.6	3.15	25	18×20	24	19	25	20	75	0.031	0.023	4.5	3.4	51004E3	31004E3	91004E3
3.0	2.8	2.6	3.15	30	18×25	23	17	30	25	140	0.038	0.028	3.8	2.8	51007E3	31007E3	91007E3
3.0	2.8	2.6	3.15	35	16×31	24	18	30	25	200	0.044	0.033	4.9	3.7	51002E3	31002E3	91002E3
3.0	2.8	2.6	3.15	40	18×31	22	16	35	30	200	0.050	0.038	4.0	3.0	51001E3	31001 E 3	91001 E 3
3.0	2.8	2.6	3.15	50	18×35	19	14	35	30	250	0.063	0.047	4.3	3.2	51008E3	31008 E 3	91008E3
3.0	2.8	2.6	3.15	60	18×40	17	13	35	30	300	0.075	0.056	4.5	3.4	51009E3	- 9	91009E3
3.0	2.8	2.6	3.15	100	20×40	17	13	35	30	500	0.125	0.090	6.3	4.7	51024E3	-	-

Notes
(1) $\mathrm{U}_{\mathrm{MT}}=$ rated voltage at $75^{\circ} \mathrm{C}$
(2) $\mathrm{U}_{\mathrm{CT}}=$ rated voltage at upper category temperature
${ }^{(3)}$ Rated capacitance C_{R} and maximum ESR $_{\mathrm{DC}}$ are typical values for case sizes
Table 3

ENDURANCE TEST DURATION AND USEFUL LIFE				
NOMINAL CASE SIZE $\boldsymbol{\varnothing} \mathbf{~ x ~ L ~}$	CASE CODE	ENDURANCE AT 85 ${ }^{\circ} \mathbf{C}$ $\mathbf{(h)}$	USEFUL LIFE AT 85 ${ }^{\circ} \mathbf{C}$ $\mathbf{(h)}$	
10×20	16	750	1000	
10×25	16 L	750	1000	
10×30	16 LL	750	1000	
12.5×20	17	1000	1500	
12.5×25	18	1000	1500	
12.5×30	18 L	1000	1500	
12.5×40	18 LL	1000	1500	
16×20	19 a	1000	2000	
16×25	19	1000	2000	
18×20	1820	1000	2000	
18×25	1825	1000	2000	
16×31	20	1000	2000	
18×31	1831	1000	2000	
18×35	22	1000	2000	
18×40	1840	1000	2000	
20×40	2040	1000	2000	

Table 4

RUGGEDIZED FOR HIGH HUMIDITY - BIASED HUMIDITY TESTING		
PARAMETER	PROCEDURE (AT RATED VOLTAGE)	REQUIREMENTS
Humidity (relative)	85 \%	After loading the capacitor for the specified time at maximum category temperature $T_{\text {max }}=85^{\circ} \mathrm{C}$ and 85% relative humidity, and derated permissible maximum operation voltage $\mathrm{U}=2.6 \mathrm{~V}$, following parameters are valid within a timeframe of 1000 h :
Temperature	$85^{\circ} \mathrm{C}$	No visible damage No leakage of electrolyte $\Delta \mathrm{C} / \mathrm{C}:$ within $\pm 30 \%$ of minimum initial specified value ESR: less than $3 \times$ initial specified value Leakage: less than initial specified value

TEST PROCEDURES AND REQUIREMENTS (1)

Notes

- General remark: temperatures to be measured at capacitor case
(1) Conditions: electrical measurements at $20^{\circ} \mathrm{C}$, unless otherwise specified
(2) Rated capacitance C_{R} and $E_{S R}$

MEASURING OF CHARACTERISTICS

CAPACITANCE (C)

Capacitance shall be measured by constant current discharge method.

- Constant current charge with $10 \mathrm{~mA} / \mathrm{F}$ to U_{R}
- Constant voltage charge at U_{R}
- Constant current discharge with $10 \mathrm{~mA} / \mathrm{F}$ to 0.1 V

Fig. 4 - Voltage Diagram for Capacitance Measurement
Capacitance value C_{R} is given by discharge current I_{D}, time t and rated voltage U_{R}, according to the following equation:
$C_{R}[F]=\frac{\mathrm{I}_{\mathrm{D}}[\mathrm{A}] \times\left(\mathrm{t}_{2}[\mathrm{~s}]-\mathrm{t}_{1}[\mathrm{~s}]\right)}{\mathrm{U}_{1}[\mathrm{~V}]-\mathrm{U}_{2}[\mathrm{~V}]}$
$\mathrm{C}_{\mathrm{R}} \quad$ Rated capacitance, in F
$U_{R} \quad$ Rated voltage, in V
$\mathrm{U}_{1} \quad$ Starting voltage, $0.8 \times \mathrm{U}_{\mathrm{R}}$ in V
$\mathrm{U}_{2} \quad$ Ending voltage, $0.4 \times \mathrm{U}_{\mathrm{R}}$ in V
$\Delta \mathrm{U}_{3} \quad$ Voltage drop at internal resistance, in V
$t_{1} \quad$ Time from start of discharge until voltage U_{1} is reached, in s
$t_{2} \quad$ Time from start of discharge until voltage U_{2} is reached, in s
$I_{D} \quad$ Absolute value of discharge current, in A

EQUIVALENT SERIES RESISTANCE (ESR $\mathbf{D C}$)

- Constant current charge to U_{R}
- Constant voltage charge at U_{R}
- Constant current discharge to 0.1 V
$\operatorname{ESR}_{\mathrm{DC}}[\Omega]=\frac{\Delta \mathrm{U}_{3}[\mathrm{~V}]}{\mathrm{I}_{\mathrm{D}}[\mathrm{A}]}$

ESR $_{\text {DC }}$	Equivalent series resistance, in Ω
$\Delta \mathrm{U}_{\mathrm{R}}$	Voltage drop at internal resistance, in V
	Absolute value of discharge current, in A

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

