

5 V, 64 Kbit (8 Kbit x 8) ZEROPOWER® SRAM

Datasheet - production data

Features

- Integrated, ultra low power SRAM, power-fail control circuit, and battery
- READ cycle time equals WRITE cycle time
- Automatic power-fail chip deselect and WRITE protection
- WRITE protect voltages: (V_{PFD} = power-fail deselect voltage)
- M48Z35: $V_{CC} = 4.75 \text{ to } 5.5 \text{ V}$; $4.5 \text{ V} \le V_{PFD} \le 4.75 \text{ V}$
- M48Z35Y: 4.5 to 5.5 V;
 4.2 V ≤ V_{PFD} ≤ 4.5 V
- Self-contained battery in the CAPHAT[™] DIP package
- Packaging includes a 28-lead SOIC and SNAPHAT[®] top (to be ordered separately)
- SOIC package provides direct connection for a SNAPHAT[®] top which contains the battery

- Pin and function compatible with JEDEC standard 32 Kbit x 8 SRAMs
- RoHS compliant
- Lead-free second level interconnect

Description

The M48Z58/Y ZEROPOWER® RAM is an 8 Kbit x 8 non-volatile static RAM that integrates powerfail deselect circuitry and battery control logic on a single die. The monolithic chip is available in two special packages to provide a highly integrated battery-backed memory solution.

The M48Z58/Y is a non-volatile pin and function equivalent to any JEDEC standard 8 K x 8 SRAM. It also easily fits into many ROM, EPROM, and EEPROM sockets, providing the non-volatility of PROMs without any requirement for special WRITE timing or limitations on the number of WRITEs that can be performed.

The 28-pin, 600 mil DIP CAPHAT™ houses the M48Z58/Y silicon with a long life lithium button cell in a single package.

The 28-pin, 330 mil SOIC provides sockets with gold plated contacts at both ends for direct connection to a separate SNAPHAT® housing containing the battery. The unique design allows the SNAPHAT battery package to be mounted on top of the SOIC package after the completion of the surface mount process. Insertion of the SNAPHAT housing after reflow prevents potential battery damage due to the high temperatures required for device surface-mounting.

The SNAPHAT housing is keyed to prevent reverse insertion.

The SOIC and battery packages are shipped separately in plastic anti-static tubes or in tape & reel form.

For the 28-lead SOIC, the battery package (e.g., SNAPHAT) part number is "M4Z28-BR00SH1.

Contents M48Z58, M48Z58Y

Contents

1	Diagram	. 3
2	Pin connection	4
3	Operation modes	. 6
	3.1 READ mode	6
	3.2 WRITE mode	8
	3.3 Data retention mode	9
	3.4 V _{CC} noise and negative going transients	10
4	Maximum ratings	11
5	DC and AC parameters	12
6	Package mechanical data	15
7	Part numbering	18
8	Environmental information	19
٥	Pavision history	ე_

M48Z58, M48Z58Y Diagram

1 Diagram

Figure 1. Logic diagram

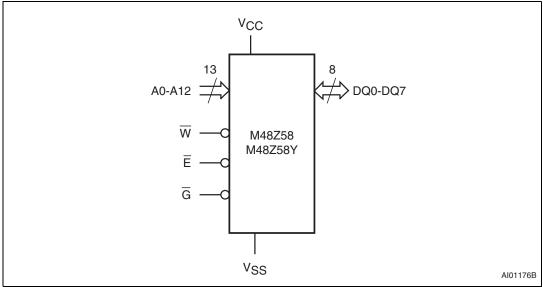


Table 1. Signal names

A0-A12	Address inputs
DQ0-DQ7	Data inputs / outputs
Ē	Chip enable input
G	Output enable input
W	WRITE enable input
V _{CC}	Supply voltage
V _{SS}	Ground
NC	Not connected internally

Pin connection M48Z58, M48Z58Y

2 Pin connection

Figure 2. DIP connections

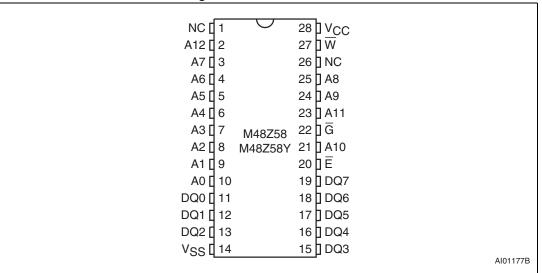
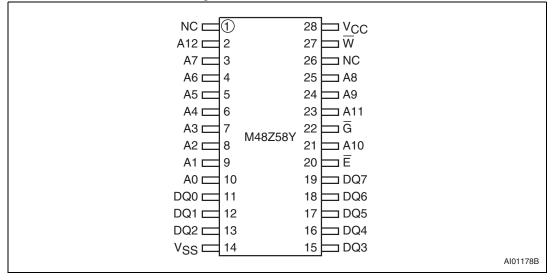



Figure 3. SOIC connections

4/21 DocID02559 Rev 12

M48Z58, M48Z58Y Pin connection

A0-A12

VOLTAGE SENSE AND SWITCHING CIRCUITRY

VPFD

VSS

AI01394

Figure 4. Block diagram

Operation modes M48Z58, M48Z58Y

3 Operation modes

The M48Z58/Y also has its own power-fail detect circuit. The control circuitry constantly monitors the single 5 V supply for an out of tolerance condition. When V_{CC} is out of tolerance, the circuit write protects the SRAM, providing a high degree of data security in the midst of unpredictable system operation brought on by low V_{CC} . As V_{CC} falls below battery switchover voltage (V_{SO}), the control circuitry connects the battery which maintains data until valid power returns.

	Table 2. Operating modes								
Mode	V _{cc}	Ē	G	w	DQ0- DQ7	Power			
Deselect		V _{IH}	Х	Х	High Z	Standby			
WRITE	4.75 to 5.5 V	V _{IL}	Х	V _{IL}	D _{IN}	Active			
READ	or 4.5 to 5.5 V	V _{IL}	V _{IL}	V _{IH}	D _{OUT}	Active			
READ		V _{IL}	V _{IH}	V _{IH}	High Z	Active			
Deselect	V _{SO} to V _{PFD} (min) ⁽¹⁾	Х	Х	Х	High Z	CMOS standby			
Deselect	$\leq V_{SO}^{(1)}$	Х	Х	Х	High Z	Battery backup mode			

Table 2. Operating modes

Note: $X = V_{IH}$ or V_{IL} : V_{SO} = battery backup switchover voltage.

3.1 READ mode

The M48Z58/Y is in the READ mode whenever \overline{W} (WRITE enable) is high, \overline{E} (chip enable) is low. Thus, the unique address specified by the 13 address inputs defines which one of the 8,192 bytes of data is to be accessed. Valid data will be available at the data I/O pins within address access time (t_{AVQV}) after the last address input signal is stable, providing that the \overline{E} and \overline{G} access times are also satisfied. If the \overline{E} and \overline{G} access times are not met, valid data will be available after the latter of the chip enable access time (t_{ELQV}) or output enable access time (t_{GLQV}).

The state of the eight three-state data I/O signals is controlled by E and G. If the outputs are activated before t_{AVQV} , the data lines will be driven to an indeterminate state until t_{AVQV} . If the address inputs are changed while \overline{E} and \overline{G} remain active, output data will remain valid for output data hold time (t_{AXQX}) but will go indeterminate until the next address access.

^{1.} See Table 10 for details.

M48Z58, M48Z58Y Operation modes

tAVAV VALID A0-A12 tAVQV -- tAXQX tELQV tEHQZ Ē tELQX -- tGLQV tGHQZ G tGLQX -VALID DQ0-DQ7 AI01385

Figure 5. READ mode AC waveforms

Note: $WRITE \ enable \ (\overline{W}) = high.$

Table 3. READ mode AC characteristics

Cumahal	Parameter ⁽¹⁾	M48Z02		
Symbol	Parameter \(\frac{1}{2}\)	Min.	Max.	Unit
t _{AVAV}	READ cycle time	70		ns
t _{AVQV}	Address valid to output valid		70	ns
t _{ELQ}	Chip enable low to output valid		70	ns
t _{GLQV}	Output enable low to output valid		35	ns
t _{ELQX} (2)	Chip enable low to output transition	5		ns
t _{GLQX} ⁽²⁾	Output enable low to output transition	5		ns
t _{EHQZ} (2)	Chip enable high to output Hi-Z		25	ns
t _{GHQZ} ⁽²⁾	Output enable high to output Hi-Z		25	ns
t _{AXQX}	Address transition to output transition	10		ns

^{1.} Valid for ambient operating temperature: $T_A = 0$ to 70 °C; $V_{CC} = 4.75$ to 5.5 V or 4.5 to 5.5 V (except where noted).

^{2.} $C_L = 5 pF$ (see figure *Figure 9*)

M48Z58, M48Z58Y Operation modes

3.2 WRITE mode

The M48Z58/Y is in the WRITE mode whenever \overline{W} and \overline{E} are low. The start of a WRITE is referenced from the latter occurring falling edge of \overline{W} or \overline{E} . A WRITE is terminated by the earlier rising edge of \overline{W} or \overline{E} . The addresses must be held valid throughout the cycle. \overline{E} or \overline{W} must return high for a minimum of t_{EHAX} from chip enable or t_{WHAX} from WRITE enable prior to the initiation of another READ or WRITE cycle. Data-in must be valid t_{DVWH} prior to the end of WRITE and remain valid for t_{WHDX} afterward. G should be kept high during WRITE cycles to avoid bus contention; although, if the output bus has been activated by a low on E and \overline{G} , a low on \overline{W} will disable the outputs $t_{WI\ OZ}$ after \overline{W} falls.

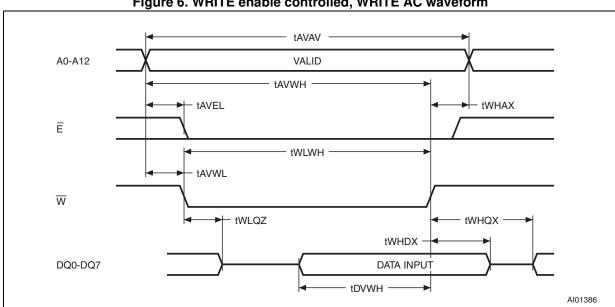
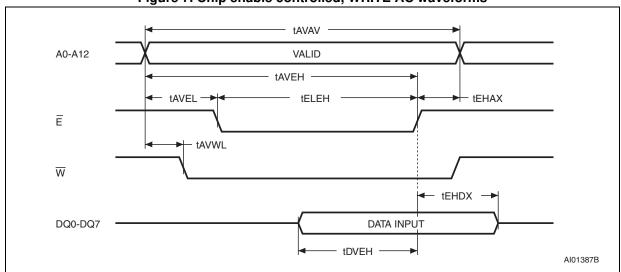



Figure 6. WRITE enable controlled, WRITE AC waveform

M48Z58, M48Z58Y Operation modes

M48Z35/M48Z35Y Parameter⁽¹⁾ -70 Unit Symbol Min. Max. WRITE cycle time 70 t_{AVAV} ns Address valid to WRITE enable low 0 t_{AVWL} ns Address valid to chip enable 1 low 0 t_{AVEL} ns WRITE enable pulse width 50 t_{WLWH} ns Chip enable low to chip enable 1 high 55 t_{ELEH} ns WRITE enable high to address transition 0 twhax ns Chip enable high to address transition 0 ns t_{EHAX} Input valid to WRITE enable high 30 t_{DVWH} ns Input valid to chip enable high 30 ns ^t_{DVEH} 5 WRITE enable high to input transition twhox ns Chip enable high to input transition 5 t_{EHDX} $t_{WLQZ}^{(2)(3)}$ WRITE enable low to output Hi-Z 25 ns Address valid to WRITE enable high 60 t_{AVWH} ns

Table 4. WRITE mode AC characteristics

t_{AVEH}

 $t_{WHQX}^{(2)(3)}$

3.3 Data retention mode

Address valid to chip enable high

WRITE enable high to output transition

With valid V_{CC} applied, the M48Z58/Y operates as a conventional BYTEWIDETM static RAM. Should the supply voltage decay, the RAM will automatically power-fail deselect, write protecting itself when V_{CC} falls within the V_{PFD} (max), V_{PFD} (min) window. All outputs become high impedance, and all inputs are treated as "Don't care."

60

5

Note:

A power failure during a WRITE cycle may corrupt data at the currently addressed location, but does not jeopardize the rest of the RAM's content. At voltages below V_{PFD} (min), the user can be assured the memory will be in a write protected state, provided the V_{CC} fall time is not less than t_F The M48Z58/Y may respond to transient noise spikes on V_{CC} that reach into the deselect window during the time the device is sampling V_{CC} . Therefore, decoupling of the power supply lines is recommended.

When V_{CC} drops below V_{SO} , the control circuit switches power to the internal battery which preserves data. The internal button cell will maintain data in the M48Z58/Y for an accumulated period of at least 10 years when V_{CC} is less than V_{SO} .

As system power returns and V_{CC} rises above V_{SO} , the battery is disconnected, and the power supply is switched to external V_{CC} . Normal RAM operation can resume t_{rec} after V_{CC} exceeds V_{PED} (max).

For more information on battery storage life refer to the application note AN1012.

ns

ns

^{1.} Valid for ambient operating temperature: $T_A = 0$ to 70 °C; $V_{CC} = 4.75$ to 5.5 V or 4.5 to 5.5 V (except where noted).

^{2.} $C_L = 5 pF (see Figure 9)$

^{3.} If \overline{E} goes low simultaneously with W going low, the outputs remain in the high impedance state.

Operation modes M48Z58, M48Z58Y

3.4 V_{CC} noise and negative going transients

 I_{CC} transients, including those produced by output switching, can produce voltage fluctuations, resulting in spikes on the V_{CC} bus. These transients can be reduced if capacitors are used to store energy which stabilizes the V_{CC} bus. The energy stored in the bypass capacitors will be released as low going spikes are generated or energy will be absorbed when overshoots occur. A ceramic bypass capacitor value of 0.1 μ F (see *Figure 8*) is recommended in order to provide the needed filtering.

In addition to transients that are caused by normal SRAM operation, power cycling can generate negative voltage spikes on V_{CC} that drive it to values below V_{SS} by as much as one volt. These negative spikes can cause data corruption in the SRAM while in battery backup mode. To protect from these voltage spikes, ST recommends connecting a schottky diode from V_{CC} to V_{SS} (cathode connected to V_{CC} , anode to V_{SS}). (Schottky diode 1N5817 is recommended for through hole and MBRS120T3 is recommended for surface mount).

V_{CC}

0.1μF

DEVICE

V_{SS}

Al02169

Figure 8. Supply voltage protection

577

M48Z58, M48Z58Y Maximum ratings

4 Maximum ratings

Stressing the device above the rating listed in the absolute maximum ratings table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 5. Absolute maximum ratings

Symbol	Parameter		Value	Unit
T _A	Ambient operating temperature		0 to 70	°C
		SNAPHAT [®] top	-40 to 85	°C
T _{STG}	Storage temperature (V _{CC} off, oscillator off)	CAPHAT® DIP	-40 to 85	°C
		SOH28	-40 to 85	°C
T _{SLD} ^{(1) (2)}	Lead solder temperature for 10 seconds	260	°C	
V _{IO}	Input or output voltages	–0.3 to 7	٧	
V _{CC}	Supply voltage	–0.3 to 7	V	
I _O	Output current	20	mA	
P _D	Power dissipation		1	W

For DIP package, soldering temperature of the IC leads is to not exceed 260 °C for 10 seconds.
Furthermore, the devices shall not be exposed to IR reflow nor preheat cycles (as performed as part of
wave soldering). ST recommends the devices be hand-soldered or placed in sockets to avoid heat damage
to the batteries.

Caution: Negative undershoots below –0.3 V are not allowed on any pin while in the battery backup mode.

Caution: Do NOT wave solder SOIC to avoid damaging SNAPHAT[®] sockets.

For SOH28 package, lead-free (Pb-free) lead finish: reflow at peak temperature of 260 °C (the time above 255 °C must not exceed 30 seconds).

5 DC and AC parameters

This section summarizes the operating and measurement conditions, as well as the DC and AC characteristics of the device. The parameters in the following DC and AC characteristic tables are derived from tests performed under the measurement conditions listed in Table 6. Designers should check that the operating conditions in their projects match the measurement conditions when using the quoted parameters.

Table 6. Operating and AC measurement conditions

Parameter	M48Z35	M48Z35Y	Unit
Supply voltage (V _{CC})	4.75 to 5.5	4.5 to 5.5	V
Ambient operating temperature (T _A)	0 to 70	0 to 70	°C
Load capacitance (C _L)	100	100	pF
Input rise and fall times	≤ 5	≤ 5	ns
Input pulse voltages	0 to 3	0 to 3	V
Input and output timing ref. voltages	1.5	1.5	V

Note: Output Hi-Z is defined as the point where data is no longer driven.

Figure 9. AC measurement load circuit 5V $1.9 k\Omega$ **DEVICE UNDER** O OUT **TEST** $1k\Omega$ $C_L = 100pF \text{ or } 5pF$ C_L includes JIG capacitance AI01030

Table 7. Capacitance

Symbol	Parameter ⁽¹⁾⁽²⁾	Min.	Max.	Unit
C _{IN}	Input capacitance	-	10	pF
C _{IO} (3)	Input / output capacitance	-	10	pF

- 1. Effective capacitance measured with power supply at 5 V. Sampled only, not 100% tested.
- 2. At 25 °C, f = 1 MHz.
- 3. Outputs deselected.

٧

Symbol	Parameter	Test condition ⁽¹⁾	Min.	Max.	Unit				
ILI	Input leakage current	$0 \text{ V} \leq V_{IN} \leq V_{CC}$		±1	μΑ				
I _{LO} ⁽²⁾	Output leakage current	$0 \text{ V} \leq \text{V}_{OUT} \leq \text{V}_{CC}$		±1	μΑ				
I _{CC}	Supply current	Outputs open		50	mA				
I _{CC1}	Supply current (standby) TTL	E = V _{IH}		3	mA				
I _{CC2}	Supply current (standby) CMOS	$\overline{E} = V_{CC} - 0.2 \text{ V}$		3	mA				
V _{IL}	Input low voltage		-0.3	0.8	V				
V _{IH}	Input high voltage		2.2	V _{CC} + 0.3	V				
V _{OL}	Output low voltage	I _{OL} = 2.1 mA		0.4	V				

Table 8. DC characteristics

 V_{OH}

Output high voltage

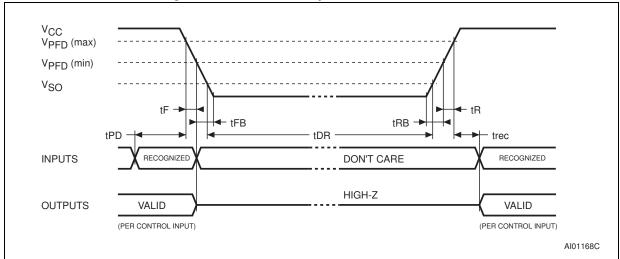


Figure 10. Power down/up mode AC waveforms

 $I_{OH} = -1 \text{ mA}$

2.4

^{1.} Valid for ambient operating temperature: $T_A = 0$ to 70 °C; $V_{CC} = 4.75$ to 5.5 V or 4.5 to 5.5 V (except where noted).

^{2.} Outputs deselected.

	Table 5.1 ower down/ap Ao onaracteristics								
Symbol	Parameter ⁽¹⁾	Min.	Max.	Unit					
t _{PD}	\overline{E} or \overline{W} at V_IH before power down	0		μs					
t _F ⁽²⁾	$t_F^{(2)}$ V_{PFD} (max) to V_{PFD} (min) V_{CC} fall time			μs					
t _{FB} ⁽³⁾	V _{PFD} (min) to V _{SS} V _{CC} fall time	10		μs					
t _R	V_{PFD} (min) to V_{PFD} (max) V_{CC} rise time	10		μs					
t _{RB}	t _{RB} V _{SS} to V _{PFD} (min) V _{CC} rise time			μs					
t _{rec}	V _{PFD} (max) to inputs recognized	40	200	ms					

Table 9. Power down/up AC characteristics

Table 10. Power down/up trip points DC characteristics

Symbol	Parameter ⁽¹⁾⁽²	Min.	Тур.	Max.	Unit	
V	Power-fail deselect voltage	M48Z58	4.5	4.6	4.75	V
V _{PFD}	M	M48Z58Y	4.2	4.35	4.5	V
V_{SO}	Battery backup switchover voltage			3.0		V
t _{DR} ⁽³⁾	Expected data retention time		10			Years

^{1.} All voltages referenced to V_{SS}.

Valid for ambient operating temperature: T_A = 0 to 70 °C; V_{CC} = 4.75 to 5.5 V or 4.5 to 5.5 V (except where noted).

^{2.} V_{PFD} (max) to V_{PFD} (min) fall time of less than t_F may result in deselection/write protection not occurring until 200 μs after V_{CC} passes V_{PFD} (min).

^{3.} V_{PFD} (min) to V_{SS} fall time of less than t_{FB} may cause corruption of RAM data.

^{2.} Valid for ambient operating temperature: $T_A = 0$ to 70 °C; $V_{CC} = 4.75$ to 5.5 V or 4.5 to 5.5 V (except where noted).

^{3.} At 25 °C, $V_{CC} = 0 \text{ V}$.

6 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Figure 11. PDIP 28.7 – 28-pin plastic DIP, battery CAPHAT™, package outline

Note: Drawing is not to scale.

Table 11. PDIP 28.7 – 28 pin plastic DIP, battery CAPHAT™, package mech. data

Symb	mm					
	Тур.	Min.	Max.	Тур.	Min.	Max.
Α		8.89	9.65		0.350	0.380
A1		0.38	0.76		0.015	0.030
A2		8.38	8.89		0.330	0.350
В		0.38	0.53		0.015	0.021
B1		1.14	1.78		0.045	0.070
С		0.20	0.31		0.008	0.012
D		39.37	39.88		1.550	1.570
E		17.83	18.34		0.702	0.722
e1		2.29	2.79		0.090	0.110
e3	33.02			1.3		
eA		15.24	16.00		0.600	0.630
L		3.05	3.81		0.120	0.150
N		28			28	

Table 12. SOH28 – 28-lead plastic small outline, battery SNAPHAT®, pack. outline

Note: Drawing is not to scale.

Table 13. SOH28 – 28-lead plastic small outline, battery SNAPHAT®, pack. mech. data

Symbol		mm			inches		
	Тур.	Min.	Max.	Тур.	Min.	Max.	
Α			3.05			0.120	
A1		0.05	0.36		0.002	0.014	
A2		2.34	2.69		0.092	0.106	
В		0.36	0.51		0.014	0.020	
С		0.15	0.32		0.006	0.012	
D		17.71	18.49		0.697	0.728	
E		8.23	8.89		0.324	0.350	
е	1.27	-	_	0.050	-	_	
eВ		3.20	3.61		0.126	0.142	
Н		11.51	12.70		0.453	0.500	
L		0.41	1.27		0.016	0.050	
а		0°	8°		0°	8°	
N		28			28		
СР			0.10			0.004	

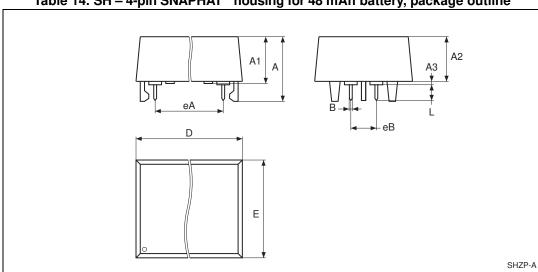


Table 14. SH – 4-pin SNAPHAT® housing for 48 mAh battery, package outline

Note: Drawing is not to scale.

Table 15. SH - 4-pin SNAPHAT® housing for 48 mAh battery, pack. mech. data

					- 37	
Cumbal	mm			inches		
Symbol	Тур.	Min.	Max.	Тур.	Min.	Max.
Α			9.78			0.385
A1		6.73	7.24		0.265	0.285
A2		6.48	6.99		0.255	0.275
А3			0.38			0.015
В		0.46	0.56		0.018	0.022
D		21.21	21.84		0.835	0.860
E		14.22	14.99		0.560	0.590
eA		15.55	15.95		0.612	0.628
eВ		3.20	3.61		0.126	0.142
L		2.03	2.29		0.080	0.090

Part numbering M48Z58, M48Z58Y

7 Part numbering

18/21

Table 16. Ordering information

Order code	Package	Temperature range	Speed	Supply voltage
M48Z58-70PC1	PDIP 28.7	0 to 70 °C	70	V _{CC} = 4.75 to 5.5 V; V _{PFD} = 4.5 to 4.75 V
M48Z58Y-70PC1	FDIF 20.1			V _{CC} = 4.5 to 5.5 V; V _{PFD} = 4.2 to 4.5 V
M48Z58Y-70MH1F	SOH28			V _{CC} = 4.75 to 5.5 V; V _{PFD} = 4.5 to 4.75 V

Caution: Do not place the SNAPHAT battery package "M4Zxx-BR00SH1" in conductive foam as it will drain the lithium button-cell battery.

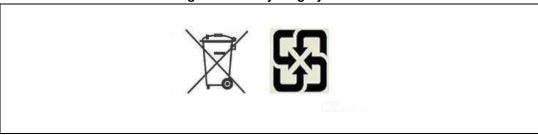

For other options, or for more information on any aspect of this device, please contact the ST sales office nearest you.

Table 17. SNAPHAT® battery table

	Part number	Description	Package
	M4Z28-BR00SH1	Lithium battery (48 mAh) SNAPHAT®	SH
M4Z32-BR00SH1 Lithiu		Lithium battery (120 mAh) SNAPHAT®	SH

8 Environmental information

Figure 12. Recycling symbols

This product contains a non-rechargeable lithium (lithium carbon monofluoride chemistry) button cell battery fully encapsulated in the final product.

Recycle or dispose of batteries in accordance with the battery manufacturer's instructions and local/national disposal and recycling regulations.

Revision history M48Z58, M48Z58Y

9 Revision history

Table 18. Document revision history

Date	Revision	Changes	
March 1999	1	First issue	
10-Feb-2000	1.1	2-socket SOH and 2-pin SH packages removed	
22-Feb-2000	1.2	Data retention mode paragraph changed	
14-Sep-2001	2	Reformatted; added temperature information (Table 7, 8, 3, 4, 9, 10)	
29-May-2002	2.1	Modify reflow time and temperature footnotes (Table 5)	
16-Sep-2002	2.2	Remove footnote from ordering information (Table 15)	
02-Apr-2003	3	v2.2 template applied; test condition updated (Table 10)	
23-Mar-2004	4	Reformatted; updated lead-free information (Table 5, 15)	
23-Nov-2004	5	Remove references to industrial temperature grade (Table 3, 4, 5, 6, 8, 9, 10, 15)	
09-Jun-2005	6	Removal of SNAPHAT [®] , industrial temperature sales types (Table 3, 4, 5, 6, 7, 8, 10, 15)	
14-Dec-2005	7	Updated lead-free text (Table 15)	
06-Nov-2007	8	Reformatted; added lead-free second level interconnect information to cover page and Section 5: Package mechanical data; updated Table 5, 15, 16.	
10-Mar-2009	9	Section 5: Package mechanical data; updated Table 5, 15, 16. Updated Table 5, text in Section 5: Package mechanical data; added Section 7: Environmental information; minor reformatting.	
14-Oct-2010	10	Updated Section 3, Table 11; reformatted document.	
07-Jun-2011	11	Updated footnote 1 of Table 5: Absolute maximum ratings; updated Section 7: Environmental information	
21-Oct-2020	12	Added <i>Table 16: Ordering information</i> . Updated package name.	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics - All rights reserved

