- Wide Operating Voltage Range of 2 V to 6 V
- Outputs Can Drive Up To 10 LSTTL Loads
- Low Power Consumption, 80- $\mu \mathrm{A}$ Max ICC
- Typical $\mathrm{t}_{\mathrm{pd}}=20 \mathrm{~ns}$
- ± 4-mA Output Drive at 5 V
- Low Input Current of $1 \mu \mathrm{~A}$ Max

SN54HC193 ... J OR W PACKAGE
SN74HC193... D, N, NS, OR PW PACKAGE (TOP VIEW)

- Look-Ahead Circuitry Enhances Cascaded Counters
- Fully Synchronous in Count Modes
- Parallel Asynchronous Load for Modulo-N Count Lengths
- Asynchronous Clear

NC - No internal connection

description/ordering information

The 'HC193 devices are 4-bit synchronous, reversible, up/down binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincidentally with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes normally associated with asynchronous (ripple-clock) counters.

ORDERING INFORMATION

$\mathrm{T}_{\text {A }}$	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	PDIP - N	Tube of 25	SN74HC193N	SN74HC193N
	SOIC - D	Tube of 40	SN74HC193D	HC193
		Reel of 2500	SN74HC193DR	
		Reel of 250	SN74HC193DT	
	SOP - NS	Reel of 2000	SN74HC193NSR	HC193
	TSSOP - PW	Tube of 90	SN74HC193PW	HC193
		Reel of 2000	SN74HC193PWR	
		Reel of 250	SN74HC193PWT	
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	CDIP - J	Tube of 25	SNJ54HC193J	SNJ54HC193J
	CFP - W	Tube of 150	SNJ54HC193W	SNJ54HC193W
	LCCC - FK	Tube of 55	SNJ54HC193FK	SNJ54HC193FK

\dagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SN54HC193, SN74HC193
 4-BIT SYNCHRONOUS UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR)
 SCLS122D - DECEMBER 1982 - REVISED OCTOBER 2003

description/ordering information (continued)

The outputs of the four flip-flops are triggered on a low-to-high-level transition of either count (clock) input (UP or DOWN). The direction of counting is determined by which count input is pulsed while the other count input is high.

All four counters are fully programmable; that is, each output may be preset to either level by placing a low on the load ($\overline{\mathrm{LOAD}})$ input and entering the desired data at the data inputs. The output changes to agree with the data inputs independently of the count pulses. This feature allows the counters to be used as modulo-N dividers simply by modifying the count length with the preset inputs.

A clear (CLR) input has been provided that forces all outputs to the low level when a high level is applied. The clear function is independent of the count and LOAD inputs.

These counters were designed to be cascaded without the need for external circuitry. The borrow ($\overline{\mathrm{BO}}$) output produces a low-level pulse while the count is zero (all outputs low) and DOWN is low. Similarly, the carry (CO) output produces a low-level pulse while the count is maximum (9 or 15), and UP is low. The counters then can be cascaded easily by feeding $\overline{\mathrm{BO}}$ and $\overline{\mathrm{CO}}$ to DOWN and UP, respectively, of the succeeding counter.
logic diagram (positive logic)

Pin numbers shown are for the D, J, N, NS, PW, and W packages.

SN54HC193, SN74HC193

4-BIT SYNCHRONOUS UP/DOWN COUNTERS

 (DUAL CLOCK WITH CLEAR)SCLS122D - DECEMBER 1982 - REVISED OCTOBER 2003

typical clear, load, and count sequence

The following sequence is illustrated below:

1. Clear outputs to 0
2. Load (preset) to binary 13
3. Count up to 14,15 , carry, 0,1 , and 2
4. Count down to 1,0 , borrow, 15,14 , and 13

NOTES: A. CLR overrides $\overline{\text { LOAD }}$, data, and count inputs.
B. When counting up, count-down input must be high; when counting down, count-up input must be high

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Input clamp current, } \mathrm{I}_{\mathrm{IK}}\left(\mathrm{~V}_{\mathrm{I}}<0 \text { or } \mathrm{V}_{\mathrm{I}}>\mathrm{V}_{\mathrm{CC}}\right)(\text { see Note 1) . } \pm 20 \mathrm{~mA}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Continuous output current, } \mathrm{I}_{\mathrm{O}}\left(\mathrm{~V}_{\mathrm{O}}=0 \text { to } \mathrm{V}_{\mathrm{CC}}\right) \text {. } \pm 25 \mathrm{~mA} \\
& \text { Continuous current through } V_{C C} \text { or GND . } \pm 50 \mathrm{~mA} \\
& \text { Package thermal impedance, } \theta_{\text {JA }} \text { (see Note 2): D package . 73} \mathrm{C} / \mathrm{W} \\
& \text { N package . } 67^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { NS package ... } 64^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { PW package } 108^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { Storage temperature range, } T_{\text {stg }} \\
& \dagger \text { Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and } \\
& \text { functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not } \\
& \text { implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. } \\
& \text { NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed. } \\
& \text { 2. The package thermal impedance is calculated in accordance with JESD 51-7. }
\end{aligned}
$$

recommended operating conditions (see Note 3)

			SN54HC193			SN74HC193			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	
V_{CC}	Supply voltage		2	5	6	2	5	6	V
		$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$	1.5			1.5			
V_{IH}	High-level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.15			3.15			V
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$	4.2			4.2			
		$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$			0.5			0.5	
$\mathrm{V}_{\text {IL }}$	Low-level input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			1.35			1.35	V
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$			1.8			1.8	
V_{1}	Input voltage		0		V_{CC}	0		V_{CC}	V
V_{O}	Output voltage		0		V_{CC}	0		V_{CC}	V
		$\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$			1000			1000	
$\Delta t / \Delta v \ddagger$	Input transition rise/fall time	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$			500			500	ns
		$\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$			400			400	
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55		125	-40		85	${ }^{\circ} \mathrm{C}$

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
\ddagger If this device is used in the threshold region (from $\mathrm{V}_{\text {IL }} \max =0.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{IH}} \mathrm{min}=1.5 \mathrm{~V}$), there is a potential to go into the wrong state from induced grounding, causing double clocking. Operating with the inputs at $t_{t}=1000 \mathrm{~ns}$ and $\mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$ does not damage the device; however, functionally, the CLK inputs are not ensured while in the shift, count, or toggle operating modes.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		V_{Cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54HC193		SN74HC193		UNIT	
			MIN	TYP	MAX	MIN	MAX	MIN	MAX			
V_{OH}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	$\mathrm{IOH}=-20 \mu \mathrm{~A}$		2 V	1.9	1.998		1.9		1.9		V
			4.5 V	4.4	4.499		4.4		4.4			
			6 V	5.9	5.999		5.9		5.9			
		$\mathrm{IOH}=-4 \mathrm{~mA}$	4.5 V	3.98	4.3		3.7		3.84			
		$\mathrm{IOH}^{\prime}=-5.2 \mathrm{~mA}$	6 V	5.48	5.8		5.2		5.34			
VOL	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	$\mathrm{IOL}=20 \mu \mathrm{~A}$	2 V		0.002	0.1		0.1		0.1	V	
			4.5 V		0.001	0.1		0.1		0.1		
			6 V		0.001	0.1		0.1		0.1		
		$\mathrm{IOL}=4 \mathrm{~mA}$	4.5 V		0.17	0.26		0.4		0.33		
		$\mathrm{IOL}=5.2 \mathrm{~mA}$	6 V		0.15	0.26		0.4		0.33		
1	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or 0		6 V		± 0.1	± 100		± 1000		± 1000	nA	
${ }^{\text {ICC }}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or $0, \quad \mathrm{IO}=0$		6 V			8		160		80	$\mu \mathrm{A}$	
C_{i}			2 V to 6 V		3	10		10		10	pF	

timing requirements over recommended operating free-air temperature range (unless otherwise noted)

switching characteristics over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	$\begin{aligned} & \text { FROM } \\ & \text { (INPUT) } \end{aligned}$	TO (OUTPUT)	V_{CC}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			SN54HC193		SN74HC193		UNIT
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
${ }^{\text {fmax }}$			2 V	4.2	8		2.8		3.3		MHz
			4.5 V	21	55		14		17		
			6 V	24	60		16		19		
$t_{\text {tpd }}$	UP	$\overline{\mathrm{CO}}$	2 V		75	165		250		205	ns
			4.5 V		24	33		50		41	
			6 V		20	28		43		35	
	DOWN	$\overline{\mathrm{BO}}$	2 V		75	165		250		205	
			4.5 V		24	33		50		41	
			6 V		20	28		43		35	
	UP or DOWN	Any Q	2 V		190	250		375		315	
			4.5 V		40	50		75		63	
			6 V		35	43		64		54	
	$\overline{\text { LOAD }}$	Any Q	2 V		190	260		390		325	
			4.5 V		40	52		78		65	
			6 V		35	44		66		55	
tPHL	CLR	Any Q	2 V		170	240		360		300	ns
			4.5 V		36	48		72		60	
			6 V		31	41		61		51	
t_{t}		Any	2 V		38	75		110		95	ns
			4.5 V		8	15		22		19	
			6 V		6	13		19		16	

operating characteristics, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| PARAMETER | TEST CONDITIONS | TYP | UNIT |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}_{\text {pd }} \quad$ Power dissipation capacitance | No load | 50 | pF |

SN54HC193, SN74HC193

4-BIT SYNCHRONOUS UP/DOWN COUNTERS

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS
SETUP AND HOLD AND INPUT RISE AND FALL TIMES

VOLTAGE WAVEFORMS
PROPAGATION DELAY AND OUTPUT TRANSITION TIMES

NOTES: A. C_{L} includes probe and test-fixture capacitance.
B. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}}=6 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$.
C. For clock inputs, $f_{\text {max }}$ is measured when the input duty cycle is 50%.
D. The outputs are measured one at a time with one input transition per measurement.
E. $t_{P L H}$ and $t_{P H L}$ are the same as $t_{p d}$.

Figure 1. Load Circuit and Voltage Waveforms

TEXAS
PACKAGE OPTION ADDENDUM
INSTRUMENTS

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
5962-8772401EA	ACTIVE	CDIP	J	16	1	Non-RoHS \& Green	SNPB	N / A for Pkg Type	-55 to 125	$\begin{aligned} & \text { 5962-8772401EA } \\ & \text { SNJ54HC193J } \end{aligned}$	Samples
SN54HC193J	ACTIVE	CDIP	J	16	1	Non-RoHS \& Green	SNPB	N / A for Pkg Type	-55 to 125	SN54HC193J	Samples
SN74HC193D	ACTIVE	SOIC	D	16	40	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC193	Samples
SN74HC193DR	ACTIVE	SOIC	D	16	2500	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC193	Samples
SN74HC193N	ACTIVE	PDIP	N	16	25	RoHS \& Green	NIPDAU	N / A for Pkg Type	-40 to 85	SN74HC193N	Samples
SN74HC193NE4	ACTIVE	PDIP	N	16	25	RoHS \& Green	NIPDAU	N / A for Pkg Type	-40 to 85	SN74HC193N	Samples
SN74HC193NSR	ACTIVE	SO	NS	16	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC193	Samples
SN74HC193PW	ACTIVE	TSSOP	PW	16	90	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC193	Samples
SN74HC193PWR	ACTIVE	TSSOP	PW	16	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	HC193	Samples
SNJ54HC193J	ACTIVE	CDIP	J	16	1	Non-RoHS \& Green	SNPB	N / A for Pkg Type	-55 to 125	$\begin{aligned} & \text { 5962-8772401EA } \\ & \text { SNJ54HC193J } \end{aligned}$	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the $<=1000$ ppm threshold requirement.
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54HC193, SN74HC193

- Catalog : SN74HC193
- Automotive : SN74HC193-Q1, SN74HC193-Q1
- Military : SN54HC193

NOTE: Qualified Version Definitions:

- Catalog - TI's standard catalog product
- Automotive-Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Military - QML certified for Military and Defense Applications

TeXAS

TAPE AND REEL INFORMATION

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	$\underset{(\mathrm{mm})}{\mathrm{AO}}$	$\begin{gathered} \mathrm{BO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{KO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { P1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { W } \\ (\mathrm{mm}) \end{gathered}$	Pin1 Quadrant
SN74HC193DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74HC193NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
SN74HC193PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74HC193DR	SOIC	D	16	2500	340.5	336.1	32.0
SN74HC193NSR	SO	NS	16	2000	853.0	449.0	35.0
SN74HC193PWR	TSSOP	PW	16	2000	853.0	449.0	35.0

TUBE

B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	$\mathbf{L}(\mathbf{m m})$	$\mathbf{W}(\mathbf{m m})$	$\mathbf{T}(\boldsymbol{\mu m})$	$\mathbf{B}(\mathbf{m m})$
SN74HC193D	D	SOIC	16	40	507	8	3940	4.32
SN74HC193N	N	PDIP	16	25	506	13.97	11230	4.32
SN74HC193N	N	PDIP	16	25	506	13.97	11230	4.32
SN74HC193NE4	N	PDIP	16	25	506	13.97	11230	4.32
SN74HC193NE4	N	PDIP	16	25	506	13.97	11230	4.32
SN74HC193PW	PW	TSSOP	16	90	530	10.2	3600	3.5

DIM PINS **	14	16	18	20
A	0.300 $(7,62)$ BSC			
B MAX	0.785 $(19,94)$.840 $(21,34)$	0.960 $(24,38)$	1.060 $(26,92)$
B MIN	-	-	-	-
C MAX	0.300 $(7,62)$	0.300 $(7,62)$	0.310 $(7,87)$	0.300 $(7,62)$
C MIN	0.245 $(6,22)$	0.245 $(6,22)$	0.220 $(5,59)$	0.245 $(6,22)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C) Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

D The 20 pin end lead shoulder width is a vendor option, either half or full width.

NOTES:

1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm , per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm , per side.

NOTES: (continued)
5. Publication IPC-7351 may have alternate designs.
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:7X

NOTES: (continued)
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
8. Board assembly site may have different recommendations for stencil design.

D (R-PDSO-G16)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed $0.006(0,15)$ each side.
D Body width does not include interlead flash. Interlead flash shall not exceed $0.017(0,43)$ each side.
E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

NOTES:

1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
5. Reference JEDEC registration MO-153.

NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE: 10X

NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
9. Board assembly site may have different recommendations for stencil design.

NS (R-PDSO-G**)
14-PINS SHOWN

DIM PINS **	14	16	20	24
A MAX	10,50	10,50	12,90	15,30
A MIN	9,90	9,90	12,30	14,70

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

