IGBT - Short-Circuit Rated

This Insulated Gate Bipolar Transistor (IGBT) features a robust and cost effective Non–Punch Through (NPT) Trench construction, and provides superior performance in demanding switching applications. Offering both low on state voltage and minimal switching loss, the IGBT is well suited for motor drive control and other hard switching applications.

Features

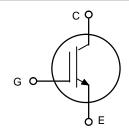
- Low Saturation Voltage Resulting in Low Conduction Loss
- Low Switching Loss in Higher Frequency Applications
- 5 µs Short Circuit Capability
- Excellent Current versus Package Size Performance Density
- This is a Pb-Free Device

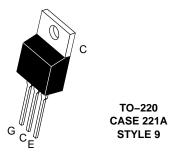
Typical Applications

- White Goods Appliance Motor Control
- General Purpose Inverter
- AC and DC Motor Control

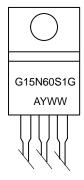
ABSOLUTE MAXIMUM RATINGS

Symbol	Value	Unit
V _{CES}	650	V
I _C	30 15	А
I _{CM}	120	Α
V_{GE}	±20	V
P _D	117 47	W
t _{SC}	5	μs
T _J	-55 to +150	°C
T _{stg}	-55 to +150	°C
T _{SLD}	260	°C
	VCES IC ICM VGE PD tsc TJ Tstg	V _{CES} 650 I _C 30 15 I _{CM} 120 V _{GE} ±20 P _D 117 47 t _{SC} 5 T _J -55 to +150 T _{stg} -55 to +150


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.



ON Semiconductor®


www.onsemi.com

15 A, 650 V V_{CEsat} = 1.5 V

MARKING DIAGRAM

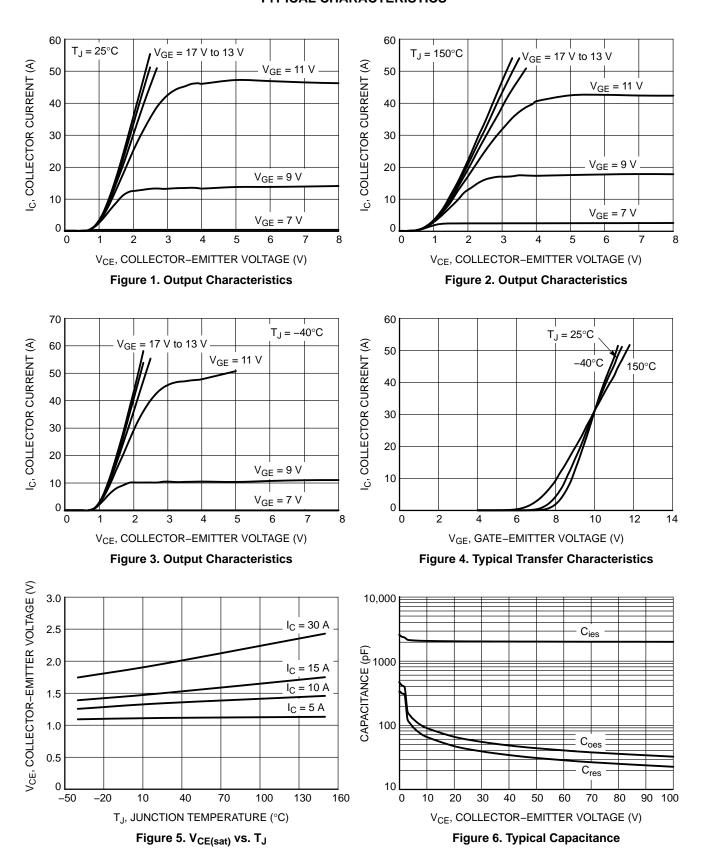
A = Assembly Location
Y = Year
WW = Work Week
G = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping
NGTG15N60S1EG	TO-220 (Pb-Free)	50 Units / Rail

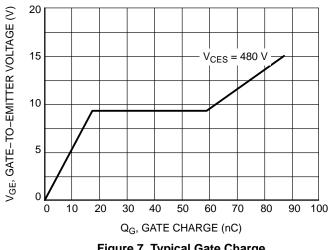
THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal resistance junction to case, for IGBT	$R_{ heta JC}$	1.06	°C/W
Thermal resistance junction to ambient	$R_{ heta JA}$	60	°C/W


ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

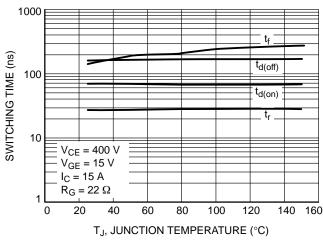
Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit	
STATIC CHARACTERISTIC							
Collector–emitter breakdown voltage, gate–emitter short–circuited	$V_{GE} = 0 \text{ V}, I_C = 500 \mu\text{A}$	V _{(BR)CES}	650	_	_	V	
Collector-emitter saturation voltage	V _{GE} = 15 V , I _C = 15 A V _{GE} = 15 V , I _C = 15 A, T _J = 150°C	V _{CEsat}	1.3 1.55	1.5 1.75	1.7 1.95	V	
Gate-emitter threshold voltage	V_{GE} = V_{CE} , I_{C} = 250 μA	V _{GE(th)}	4.5	5.5	6.5	V	
Collector-emitter cut-off current, gate-emitter short-circuited	V _{GE} = 0 V, V _{CE} = 600 V V _{GE} = 0 V, V _{CE} = 600 V, T _J = 150°C	I _{CES}	_	10 -	_ 200	μΑ	
Gate leakage current, collector–emitter short–circuited	$V_{GE} = 20 \text{ V}, V_{CE} = 0 \text{ V}$	I _{GES}	_	-	100	nA	
Forward Transconductance	$V_{CE} = 20 \text{ V}, I_{C} = 15 \text{ A}$	9fs	-	10.1	-	S	
DYNAMIC CHARACTERISTIC							
Input capacitance		C _{ies}	-	1950	-		
Output capacitance	$V_{CE} = 20 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$	C _{oes}	-	70	-	pF	
Reverse transfer capacitance		C _{res}	-	48	-		
Gate charge total		Q_{g}	-	88	-		
Gate to emitter charge	$V_{CE} = 480 \text{ V}, I_{C} = 15 \text{ A}, V_{GE} = 15 \text{ V}$	Q _{ge}	-	16	-	nC	
Gate to collector charge		Q _{gc}	-	42	-		
SWITCHING CHARACTERISTIC , INDUCTIVE	LOAD						
Turn-on delay time		t _{d(on)}	-	65	-		
Rise time		t _r	-	28	-		
Turn-off delay time	T _J = 25°C	t _{d(off)}	-	170	-	ns	
Fall time	$V_{CC} = 400 \text{ V, } I_{C} = 15 \text{ A}$ $R_{a} = 22 \Omega$	t _f	-	140	-		
Turn-on switching loss	$R_g = 22 \Omega$ $V_{GE} = 0 V / 15 V^*$	E _{on}	-	0.550	-		
Turn-off switching loss		E _{off}	-	0.350	-	mJ	
Total switching loss		E _{ts}	-	0.900	-		
Turn-on delay time		t _{d(on)}	-	65	-		
Rise time		t _r	-	28	-	20	
Turn-off delay time	T _J = 150°C	t _{d(off)}	-	180	-	ns	
Fall time	$V_{CC} = 400 \text{ V, } I_{C} = 15 \text{ A}$ $R_{\alpha} = 22 \Omega$	t _f	-	260	-		
Turn-on switching loss	$R_g = 22 \Omega$ $V_{GE} = 0 V / 15 V^*$	E _{on}	-	0.650	-		
Turn-off switching loss		E _{off}	-	0.600	-	mJ	
Total switching loss		E _{ts}	-	1.250	-		

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


*Includes diode reverse recovery loss using NGTB15N60S1EG.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS


0.7

Eon 0.6 SWITCHING LOSS (mJ) 0.5 Eoff 0.4 0.3 V_{CE} = 400 V 0.2 $V_{GE} = 15 V$ $I_{C} = 15 A$ 0.1 $R_G = 22 \Omega$ 0 0 20 40 60 80 100 120 140 160 T_J, JUNCTION TEMPERATURE (°C)

Figure 7. Typical Gate Charge

Figure 8. Switching Loss vs. Temperature

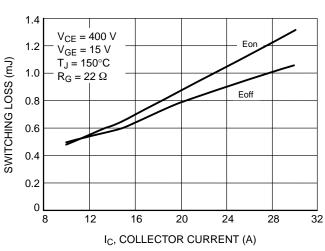
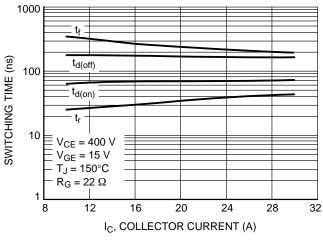



Figure 9. Switching Time vs. Temperature

Figure 10. Switching Loss vs. I_C

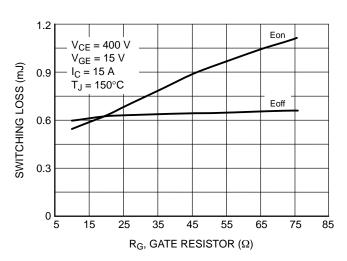


Figure 11. Switching Time vs. I_C

Figure 12. Switching Time vs. R_G

TYPICAL CHARACTERISTICS

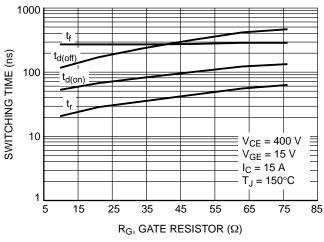


Figure 13. Switching Time vs. R_G

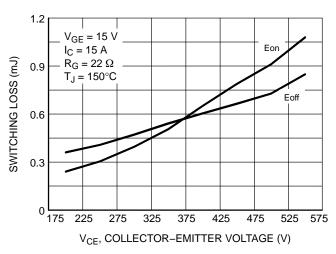


Figure 14. Switching Loss vs. V_{CE}

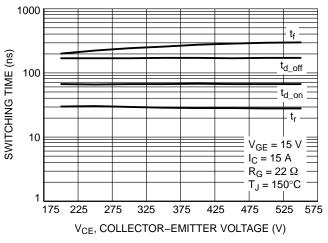


Figure 15. Switching Time vs. V_{CE}

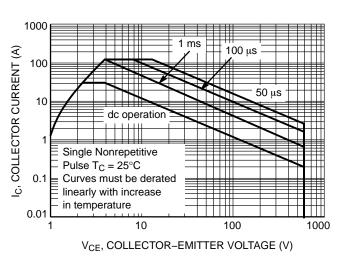


Figure 16. Safe Operating Area

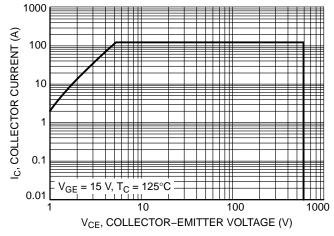


Figure 17. Reverse Bias Safe Operating Area

TYPICAL CHARACTERISTICS

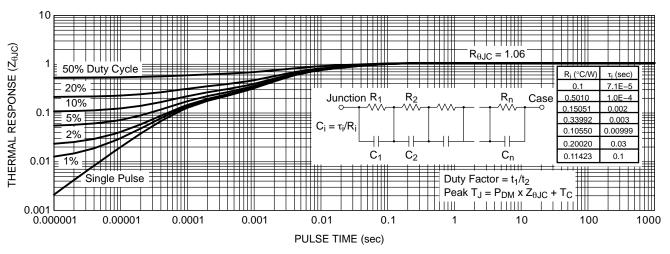


Figure 18. IGBT Transient Thermal Impedance

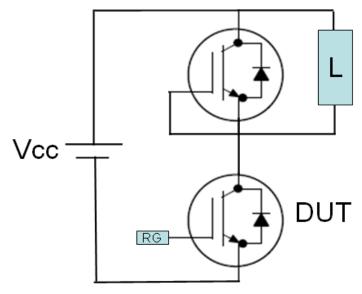


Figure 19. Test Circuit for Switching Characteristics

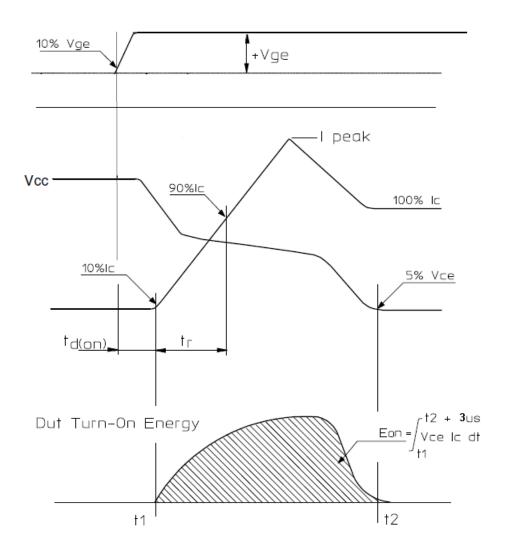


Figure 20. Definition of Turn On Waveform

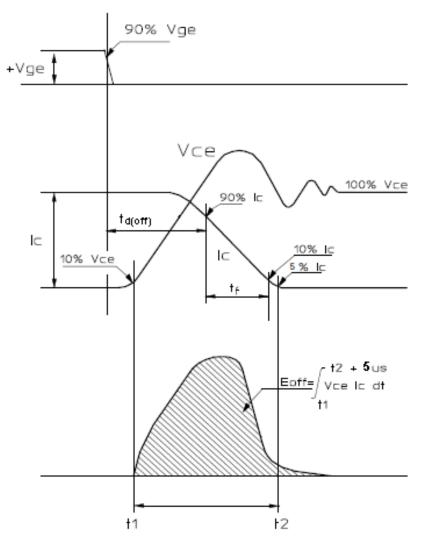
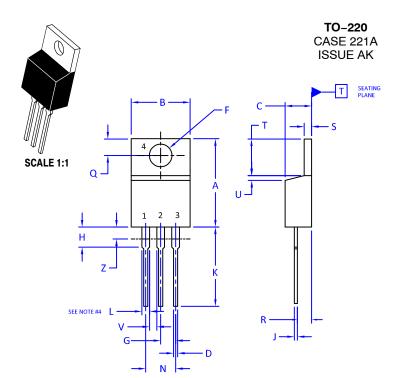



Figure 21. Definition of Turn Off Waveform

DATE 13 JAN 2022

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: INCHES
- 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

4. MAX WIDTH FOR F102 DEVICE = 1.35MM

	INCHES		MILLIMETERS	
DIM	MIN.	MAX.	MIN.	MAX.
Α	0.570	0.620	14.48	15.75
В	0.380	0.415	9.66	10.53
С	0.160	0.190	4.07	4.83
D	0.025	0.038	0.64	0.96
F	0.142	0.161	3.60	4.09
G	0.095	0.105	2.42	2.66
Н	0.110	0.161	2.80	4.10
J	0.014	0.024	0.36	0.61
К	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.41
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045		1.15	
Z		0.080		2.04

STYLE 1: PIN 1. 2. 3. 4.	COLLECTOR EMITTER	STYLE 2: PIN 1. 2. 3. 4.	EMITTER COLLECTOR	STYLE 3: PIN 1. 2. 3. 4.	ANODE	2. 3.	MAIN TERMINAL 1 MAIN TERMINAL 2 GATE MAIN TERMINAL 2
STYLE 5: PIN 1. 2. 3. 4.	DRAIN SOURCE	2. 3.	ANODE CATHODE ANODE CATHODE	STYLE 7: PIN 1. 2. 3. 4.	ANODE	2. 3.	CATHODE ANODE EXTERNAL TRIP/DELAY ANODE
STYLE 9: PIN 1. 2. 3. 4.		STYLE 10: PIN 1. 2. 3. 4.	GATE	STYLE 11: PIN 1. 2. 3. 4.	DRAIN	STYLE 12: PIN 1. 2. 3. 4.	

DOCUMENT NUMBER:	98ASB42148B	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-220		PAGE 1 OF 1		

onsemi and ONSEMi are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative