Intelligent Power Module (IPM) 1200 V, 10 A

Advance Information NFAM1012L5B

The NFAM1012L5B is a fully-integrated inverter power module consisting of an independent High side gate driver, LVIC, six IGBT's and a temperature sensor (TSU by LVIC), suitable for driving permanent magnet synchronous (PMSM) motors, brushless DC (BLDC) motors and AC asynchronous motors. The IGBT's are configured in a three-phase bridge with separate emitter connections for the lower legs for maximum flexibility in the choice of control algorithm.

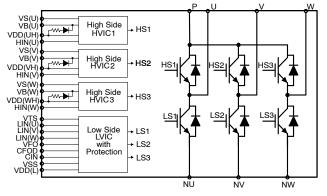
The power stage has under-voltage lockout protection (UVP). Internal boost diodes are provided for high side gate boost drive.

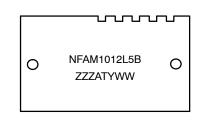
Features

- Three-phase 1200 V, 10 A IGBT Module with Independent Drivers
- Active Logic Interface
- Built-in Under-voltage Protection (UVP)
- Integrated Bootstrap Diodes and Resistors
- Separate Low-side IGBT Emitter Connections for Individual Current Sensing of Each Phase
- Temperature Sensor (TSU Output by LVIC)
- UL Certification: E339285
- This is a Pb–Free Device

Typical Application

- Industrial Drives
- Industrial Pumps
- Industrial Fans
- Industrial Automation




Figure 1. Application Schematic

This document contains information on a new product. Specifications and information herein are subject to change without notice.

CASE MODGX DIP39, 54.5x31.0 EP-2

MARKING DIAGRAM

ZZZ= Assembly Lot CodeA= Assembly LocationT= Test LocationY= YearWW= Work WeekDevice marking is on package top side	NFAM1012L5B	= Specific Device Code
T= Test LocationY= YearWW= Work Week	ZZZ	= Assembly Lot Code
Y = Year WW = Work Week	A	= Assembly Location
WW = Work Week	Т	= Test Location
	Y	= Year
Device marking is on package top side	WW	= Work Week
	Device marking	is on package top side

ORDERING INFORMATION

Device	Package	Shipping [†] (Qty / Packing)
NFAM1012L5B	DIP39, 31.0x54.5 (Pb–Free)	90 / BOX

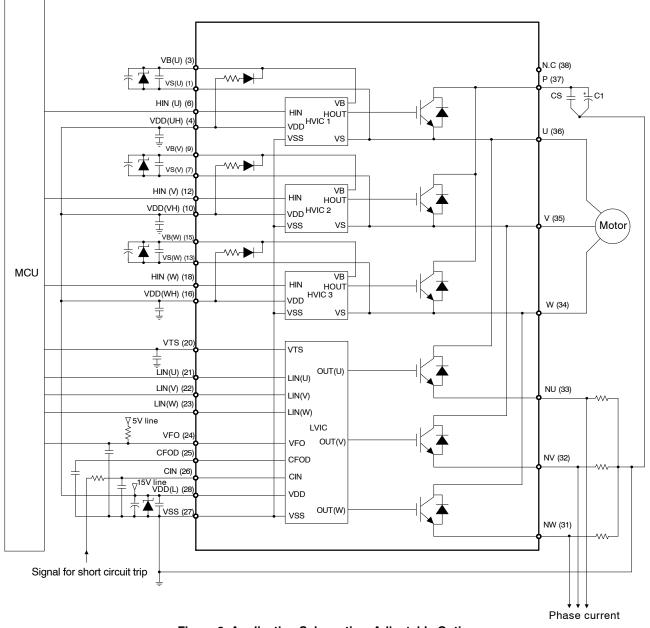


Figure 2. Application Schematic – Adjustable Option

NFAM1012L5B

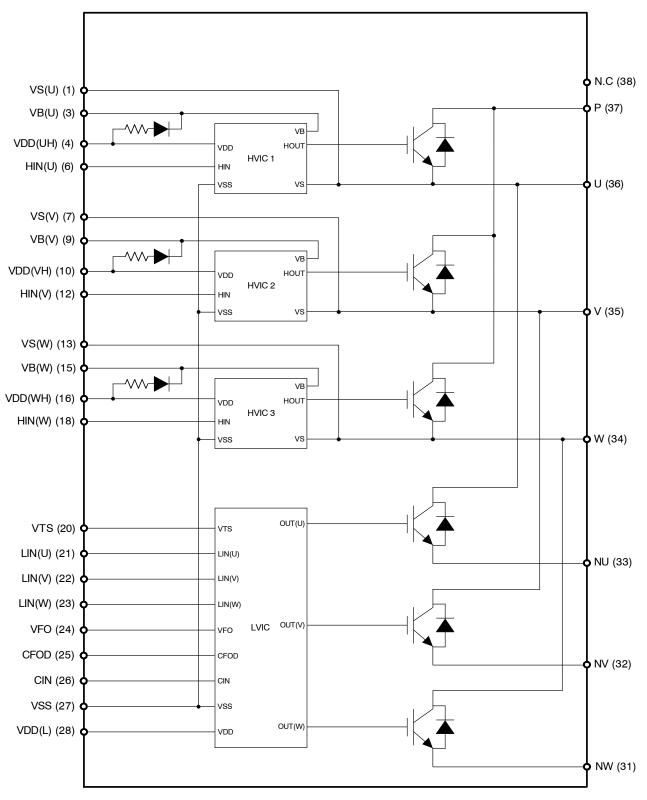


Figure 3. Equivalent Block Diagram

Table 1. PIN FUNCTION DESCRIPTION

Pin	Name	Description
1	VS(U)	High-Side Bias Voltage GND for U Phase IGBT Driving
(2)	-	Dummy
3	VB(U)	High-Side Bias Voltage for U Phase IGBT Driving
4	VDD(UH)	High-Side Bias Voltage for U Phase IC
(5)	-	Dummy
6	HIN(U)	Signal Input for High-Side U Phase
7	VS(V)	High-Side Bias Voltage GND for V Phase IGBT Driving
(8)	-	Dummy
9	VB(V)	High-Side Bias Voltage for V Phase IGBT Driving
10	VDD(VH)	High-Side Bias Voltage for V Phase IC
(11)	-	Dummy
12	HIN(V)	Signal Input for High-Side V Phase
13	VS(W)	High-Side Bias Voltage GND for W Phase IGBT Driving
(14)	-	Dummy
15	VB(W)	High-Side Bias Voltage for W Phase IGBT Driving
16	VDD(WH)	High-Side Bias Voltage for W Phase IC
(17)	-	Dummy
18	HIN(W)	Signal Input for High-Side W Phase
(19)	-	Dummy
20	VTS	Voltage Output for LVIC Temperature Sensing Unit
21	LIN(U)	Signal Input for Low-Side U Phase
22	LIN(V)	Signal Input for Low-Side V Phase
23	LIN(W)	Signal Input for Low-Side W Phase
24	VFO	Fault Output
25	CFOD	Capacitor for Fault Output Duration Selection
26	CIN	Input for Current Protection
27	VSS	Low-Side Common Supply Ground
28	VDD(L)	Low-Side Bias Voltage for IC and IGBTs Driving
(29)	_	Dummy
(30)	-	Dummy
31	NW	Negative DC-Link Input for U Phase
32	NV	Negative DC-Link Input for V Phase
33	NU	Negative DC-Link Input for W Phase
34	W	Output for U Phase
35	V	Output for V Phase
36	U	Output for W Phase
37	Р	Positive DC–Link Input
38	N.C	No Connection
(39)	_	Dummy

Table 2. ABSOLUTE MAXIMUM RATINGS T_C = 25°C (Notes 1)

Rating	Symbol	Conditions	Value	Unit
Supply Voltage	VPN	P – NU, NV, NW	900	V
Supply Voltage (Surge)	VPN(Surge)	P – NU, NV, NW, (Note 2)	1000	V
Self Protection Supply Voltage Limit (Short–Circuit Protection Capability	VPN(PROT)	VDD = VBS = 13.5 V ~ 16.5 V, Tj = 150°C, Vces < 1200 V, Non-Repetitive, < 2 μs	800	V
Collector-Emitter Voltage	Vces		1200	V
Maximum Repetitive Revers Voltage	VRRM		1200	V
Each IGBT Collector Current	±lc		±10	А
Each IGBT Collector Current (Peak)	±lcp	Under 1 ms Pulse Width	±20	Α
Control Supply Voltage High-Side	VDD	VDD(UH, VH, WH), VDD(L) – VSS	–0.3 to 20	V
Control Bias Voltage	VBS	VB(U) – VS(U), VB(V) – VS(V), VB(W) – VS(W)	-0.3 to 20	V
Input Signal Voltage	VIN	HIN(U), HIN(V), HIN(W), LIN(U), LIN(V), LIN(W) – VSS	–0.3 to VDD	V
Fault Output Supply Voltage	VFO	VFO – VSS	-0.3 to VDD	V
Fault Output Current	IFO	Sink Current at VFO pin	2	mA
Current Sensing Input Voltage	VCIN	CIN – VSS	–0.3 to VDD	V
Corrector Dissipation	Pc	Per One Chip	83	W
Operating Junction Temperature	Ti		-40 to +150	°C
Storage Temperature	Tstg		-40 to +125	°C
Module Case Operation Temperature	Тс		-40 to +125	°C
Isolation Voltage	Viso	60 Hz, Sinusoidal, AC 1 minute, Connec- tion Pins to Heat Sink Plate	2500	V rms

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.

2. This surge voltage developed by the switching operation due to the wiring inductance between P and NU, NV, NW terminal.

Table 3. THERMAL CHARACTERISTICS

Rating	Symbol	Conditions	Min	Тур	Max	Unit
Junction to Case Thermal Resistance	Rth(j–c)Q	Inverter IGBT Part (per 1/6 Module)	-	-	1.5	°C/W
	Rth(j–c)F	Inverter FRD Part (per 1/6 Module)	-	-	1.8	°C/W

3. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.

Table 4. RECOMMENDED OPERATING RANGES (Note 4)

Rating	Symbol	Conditions	Min	Тур	Max	Unit
Supply Voltage	VPN	P – NU, NV, NW	-	600	800	V
Gate Driver Supply Voltages	VDD	VDD(UH, VH, WH), VDD(L) - VSS	13.5	15	16.5	V
	VBS	$ \begin{array}{l} VB(U) \; - \; VS(U), \; VB(V) \; - \; VS(V), \\ VB(W) \; - \; VS(W) \end{array} $	13.0	15	18.5	V
Supply Voltage Variation	dVDD / dt dVBS / dt		-1	-	1	V/µs
PWM Frequency	fPWM		1		20	kHz
Dead Time	DT	Turn-off to Turn-on (external)	2	-	-	μs

Table 4. RECOMMENDED OPERATING RANGES	(Note 4) (continued)
---------------------------------------	----------------------

Rating	Symbol	Conditions		Min	Тур	Max	Unit
Allowable r.m.s. Current	lo	VPN = 600 V, VDD = VBS = 15 V, P.F. = 0.8.	f _{PWM} = 5 kHz	-	-	11.2	A rms
		$T_{c} \le 125^{\circ}C, T_{j} \le 150^{\circ}C,$ (Note 5)	f _{PWM} = 15 kHz	-	-	6.3	
Allowable Input Pulse Width	PWIN (on)	PWIN (on) $400 V \le VPN \le 800 V$, $13.5 V \le VDD \le 16.5 V$,		2.0	_	-	μs
	$\begin{array}{ c c c } \mbox{PWIN (off)} & 13.0 \ V \leq VBS \leq 18.5 \ V, \\ \mbox{-40}^{\circ}C \leq Tc \leq 150^{\circ}C \end{array}$		2.5	_	-		
Package Mounting Torque		M3 Type Screw		0.6	0.7	0.9	Nm

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

4. Allowable r.m.s Current depends on the actual conditions.

5. Flatness tolerance of the heatsink should be within –50 μm to +100 $\mu m.$

Table 5. ELECTRICAL CHARACTERISTICS (Tc = 25°C, VD = 15 V, unless otherwise noted) (Note 6)

Р	arameter	Test Conditions	Symbol	Min	Тур	Max	Unit
INVERTER	SECTION	·					
Collector-Emitter Leakage Current		Vce = Vces, Tj = 25°C	lces	-	-	1	mA
		Vce = Vces, Tj = 150°C		-	-	10	mA
Collector-Er Voltage	nitter Saturation	VDD = VBS = 15 V, IN = 5 V Ic = 10 A, Tj = 25°C	VCE(sat)	-	1.85	2.5	V
		VDD = VBS = 15 V, IN = 5 V Ic = 10 A, Tj = 150°C		-	2.0		V
FWDi Forwa	rd Voltage	IN = 0 V, If = 10 A, Tj = 25°C	VF	-	1.80	2.6	V
		IN = 0 V, If = 10 A, Tj = 150°C		-	1.70		V
High Side	High Side Switching Times	$\begin{array}{l} VPN=600 \ V, \ VDD(H)=VDD(L)=15 \ V\\ Ic=10 \ A, \ Tj=25^{\circ}C, \ IN=0 \Leftrightarrow 5 \ V\\ Inductive \ Load \end{array}$	ton	0.80	1.40	2.00	μs
			tc (on)	-	0.30	0.60	μs
			toff	-	1.70	2.50	μs
			tc (off)	-	0.20	0.60	μs
			trr	-	0.40	-	μs
Low Side	Switching Times	VPN = 600 V, VDD(H) = VDD(L) = 15 V	ton	0.90	1.50	2.10	μs
		Ic = 10 A, Tj = 25°C, IN = 0 \Leftrightarrow 5 V Inductive Load	tc (on)	-	0.30	0.60	μs
			toff	-	1.70	2.50	μs
			tc (off)	-	0.20	0.60	μs
			trr	-	0.40	-	μs

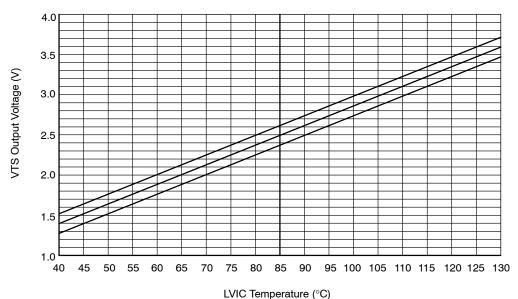
DRIVER SECTION

Quiescent VDD Supply Current	VDD(UH,VH,WH) = 15 V, HIN(U,V,W) = 0 V	VDD(UH) – VSS VDD(VH) – VSS VDD(WH) – VSS	IQDDH	_	-	0.30	mA
	VDD(L) = 15 V, LIN(U, V, W) = 0 V	VDD(L) – VSS	IQDDL	-	-	3.50	mA
Operating VDD Supply Current	VDD(UH, VH, WH) = 15 V, f _{PWM} = 20 kHz, Duty = 50%, Applied to one PWM Signal Input for High–Side	VDD(UH) – VSS VDD(VH) – VSS VDD(WH) – VSS	IPDDH	_	_	0.40	mA
	VDD(L) = 15 V, f _{PWM} = 20 kHz, Duty = 50%, Applied to one PWM Signal Input for Low–Side	VDD(L) – VSS	IPDDL	_	_	7.00	mA

Table 5. ELECTRICAL CHARACTERISTICS (Tc = 25° C, VD = 15 V, unless otherwise noted) (Note 6) (continued)
---------------------------------------	--

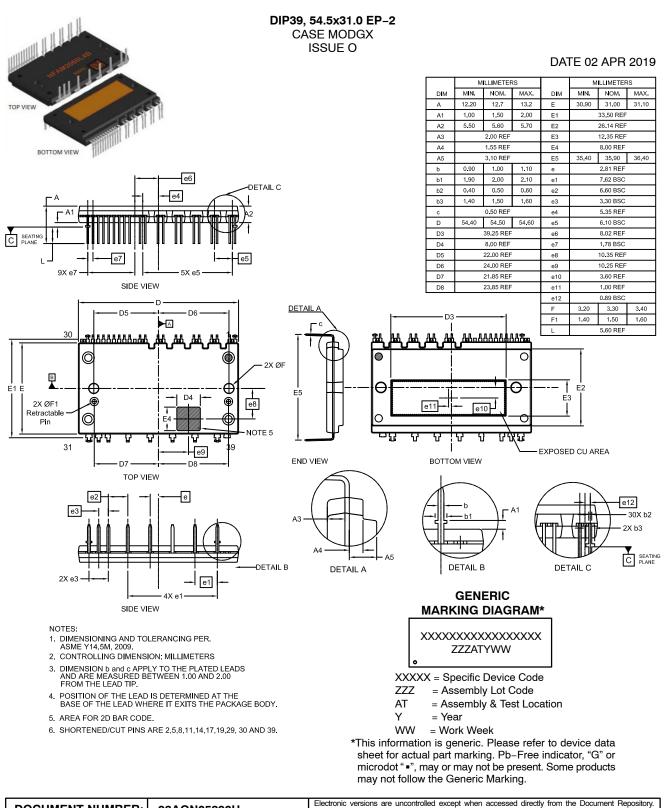
Parameter	Test Conditions	3	Symbol	Min	Тур	Мах	Unit
DRIVER SECTION	•						
Quiescent VBS Supply Current	VBS = 15 V HIN(U, V, W) = 0 V	VB(U) – VS(U) VB(V) – VS(V) VB(W) – VS(W)	IQBS	-	-	0.30	mA
Operating VBS Supply Current	VDD = VBS = 15 V, f _{PWM} = 20 kHz, Duty = 50%, Applied to one PWM Signal Input for High–Side	VB(U) – VS(U) VB(V) – VS(V) VB(W) – VS(W)	IPBS	_	_	6.00	mA
ON Threshold Voltage	HIN(U, V, W) – VSS, LIN(U, V, W)	– VSS	VIN(ON)			2.6	V
OFF Threshold Voltage			VIN(OF)	0.8			V
Short Circuit Trip Level	VDD = 15 V, CIN-VSS		VCIN(ref)	0.46	0.48	0.50	V
Supply Circuit Under-Voltage	Detection Level		UVDDD	10.3		12.5	V
Protection	It VBS = 15 V HIN(U, V, W) = 0 V VB(U) - VS(U) VB(V) - VS(V) VB(W) - VS(W) IQBS - - C t VDD = VBS = 15 V, fpWM = 20 kHz, Duty = 50%, Applied to one PWM Signal Input for High-Side VB(U) - VS(U) VB(V) - VS(V) VB(W) - VS(W) IPBS - - 6 HIN(U, V, W) - VSS, LIN(U, V, W) - VSS VIN(ON) VIN(OF) 0.8 - - 6 VDD = 15 V, CIN-VSS VCIN(ref) 0.46 0.48 0 Detection Level UVDDD 10.3 1 Reset Level UVDDR 10.8 1 Detection Level UVBSD 10.0 1 Reset Level UVBSR 10.5 1 VTS-VSS = 10 nF, Temp. = 25°C VTS (0.905) (1.030) (1 VDD = 0 V, CIN = 0 V, VFO Circuit: 10 k\Omega to 5 V Pull-up VFOH 4.9 - -	13.0	V				
	Detection Level		UVBSD	10.0		- 0.30 - 6.00 2.6 48 0.50 12.5 13.0 12.0 12.5 30) (1.155) 0.95	V
	Reset Level		UVBSR	10.5			V
Voltage Output for LVIC Temperature Sensing Unit	VTS-VSS = 10 nF, Temp. = 25°C		VTS	(0.905)	(1.030)	(1.155)	V
Fault Output Voltage			VFOH	4.9	-	-	V
			VFOL	-	-	6.00 2.6 0.50 12.5 13.0 12.0 12.5 (1.155) -	V
Fault-Output Pulse Width	CFOD = 22 nF		tFOD	1.6	2.4	_	ms

BOOTSTRAP SECTION


Bootstrap Diode Forward Current	If = 0.1 A	VF	3.4	4.6	5.8	V
Built-in Limiting Resistance		RBOOT	30	38	46	Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

6. Performance guaranteed over the indicated operating temperature range by design and/or characterization tested at T_J = T_A = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.
 7. The fault–out pulse width tFOD depends on the capacitance value of CFOD according to the following approximate equation:


 $tFOD = (TBD) \times 10^6 \times CFOD$ (s)

8. Values based on design and/or characterization.

 DOCUMENT NUMBER:
 98AON05290H
 Electronic versions are uncontrolled except when accessed directly from the Document Repository.

 DESCRIPTION:
 DIP39, 54.5x31.0 EP-2
 PAGE 1 OF 1

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or thers.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative