# **ESD Protection Diodes**

# **Ultra Low Capacitance ESD Protection Diode for High Speed Data Line**

The ESD8011 ESD protection diodes are designed to protect high speed data lines from ESD. Ultra-low capacitance and low ESD clamping voltage make this device an ideal solution for protecting voltage sensitive high speed data lines.

### **Features**

- Ultra Low Capacitance (0.10 pF Typ, I/O to GND)
- Protection for the Following IEC Standards: IEC 61000-4-2 (Level 4)
- Low ESD Clamping Voltage
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

### **Typical Applications**

- USB 3.x
- MHL 2.0
- SATA/SAS
- PCI Express

### MAXIMUM RATINGS (T<sub>J</sub> = 25°C unless otherwise noted)

| Rating                                                        | Symbol           | Value       | Unit     |
|---------------------------------------------------------------|------------------|-------------|----------|
| Operating Junction Temperature Range                          | TJ               | -55 to +125 | °C       |
| Storage Temperature Range                                     | T <sub>stg</sub> | -55 to +150 | °C       |
| Lead Solder Temperature –<br>Maximum (10 Seconds)             | TL               | 260         | °C       |
| IEC 61000-4-2 Contact (ESD)<br>IEC 61000-4-2 Air (ESD)        | ESD<br>ESD       | ±20<br>±20  | kV<br>kV |
| Maximum Peak Pulse Current<br>8/20 μs @ T <sub>A</sub> = 25°C | I <sub>pp</sub>  | 3.6         | Α        |
| Maximum Peak Pulse Power<br>8/20 μs @ T <sub>A</sub> = 25°C   | P <sub>pk</sub>  | 34          | W        |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.



# ON Semiconductor®

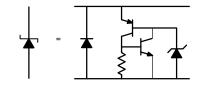
www.onsemi.com

### **MARKING DIAGRAM**

PIN 1



= Specific Device Code (Rotated 90° clockwise)


X3DFN2

CASE 152AF

= Date Code

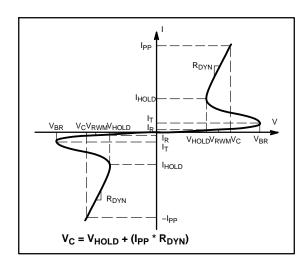
### **PIN CONFIGURATION AND SCHEMATIC**





#### ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.


See Application Note AND8308/D for further description of survivability specs.

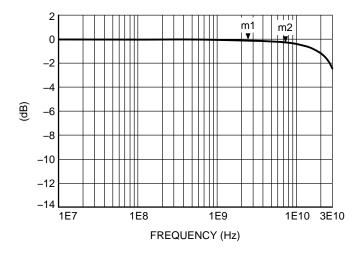
1

### **ELECTRICAL CHARACTERISTICS**

(T<sub>A</sub> = 25°C unless otherwise noted)

| Symbol            | Parameter                                                                                                     |
|-------------------|---------------------------------------------------------------------------------------------------------------|
| $V_{RWM}$         | Working Peak Voltage                                                                                          |
| I <sub>R</sub>    | Maximum Reverse Leakage Current @ V <sub>RWM</sub>                                                            |
| V <sub>BR</sub>   | Breakdown Voltage @ I <sub>T</sub>                                                                            |
| I <sub>T</sub>    | Test Current                                                                                                  |
| V <sub>HOLD</sub> | Holding Reverse Voltage                                                                                       |
| I <sub>HOLD</sub> | Holding Reverse Current                                                                                       |
| R <sub>DYN</sub>  | Dynamic Resistance                                                                                            |
| I <sub>PP</sub>   | Maximum Peak Pulse Current                                                                                    |
| V <sub>C</sub>    | Clamping Voltage @ I <sub>PP</sub> V <sub>C</sub> = V <sub>HOLD</sub> + (I <sub>PP</sub> * R <sub>DYN</sub> ) |




# **ELECTRICAL CHARACTERISTICS** (T<sub>A</sub> = 25°C unless otherwise specified)

| Parameter                        | Symbol            | Conditions                               | Min | Тур          | Max  | Unit |
|----------------------------------|-------------------|------------------------------------------|-----|--------------|------|------|
| Reverse Working Voltage          | $V_{RWM}$         | I/O Pin to GND                           |     |              | 5.5  | V    |
| Breakdown Voltage                | $V_{BR}$          | I <sub>T</sub> = 1 mA, I/O Pin to GND    | 6.5 | 7.3          |      | V    |
| Reverse Leakage Current          | I <sub>R</sub>    | V <sub>RWM</sub> = 5.5 V, I/O Pin to GND |     |              | 1.0  | μΑ   |
| Reverse Holding Voltage          | V <sub>HOLD</sub> | I/O Pin to GND                           |     | 2.05         |      | V    |
| Holding Reverse Current          | I <sub>HOLD</sub> | I/O Pin to GND                           |     | 17           |      | mA   |
| Clamping Voltage<br>TLP (Note 2) | V <sub>C</sub>    |                                          |     | 11.0<br>19.0 |      | V    |
| Dynamic Resistance               | R <sub>DYN</sub>  | Pin1 to Pin2 Pin2 to Pin1                |     | 1.0<br>1.0   |      | Ω    |
| Junction Capacitance             | СЈ                | V <sub>R</sub> = 0 V, f = 1 MHz          |     | 0.10         | 0.20 | pF   |
| Series Inductance                | L <sub>S</sub>    | V <sub>R</sub> = 0 V                     |     | 0.3          |      | nΗ   |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

For test procedure see Figure 5 and application note AND8307/D.
 ANSI/ESD STM5.5.1 – Electrostatic Discharge Sensitivity Testing using Transmission Line Pulse (TLP) Model. TLP conditions: Z<sub>0</sub> = 50 Ω, t<sub>p</sub> = 100 ns, t<sub>r</sub> = 4 ns, averaging window; t<sub>1</sub> = 30 ns to t<sub>2</sub> = 60 ns.

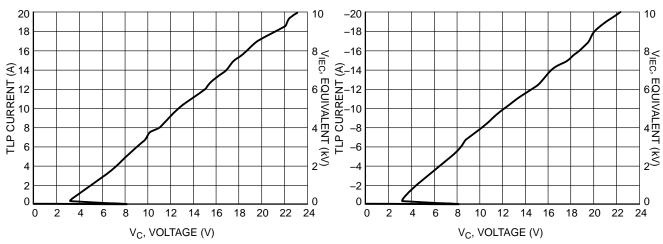
# **TYPICAL CHARACTERISTICS**



| Interface | Data Rate<br>(Gb/s) | Fundamental Frequency<br>(GHz) | 3 <sup>rd</sup> Harmonic Frequency<br>(GHz) | ESD8011 Insertion Loss (dB) |
|-----------|---------------------|--------------------------------|---------------------------------------------|-----------------------------|
| USB 3.0   | 5                   | 2.5 (m1)                       | 7.5 (m2)                                    | m1 = 0.087<br>m2 = 0.256    |

Figure 1. ESD8011 Insertion Loss

# **TYPICAL CHARACTERISTICS**



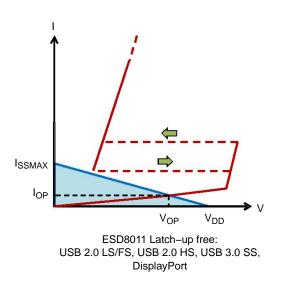


Figure 2. Positive TLP I-V Curve

Figure 3. Negative TLP I-V Curve

### Latch-Up Considerations

ON Semiconductor's 8000 series of ESD protection devices utilize a snap-back, SCR type structure. By using this technology, the potential for a latch-up condition was taken into account by performing load line analyses of common high speed serial interfaces. Example load lines for latch-up free applications and applications with the potential for latch-up are shown below with a generic IV characteristic of a snapback, SCR type structured device overlaid on each. In the latch-up free load line case, the IV characteristic of the snapback protection device intersects the load-line in one unique point (V<sub>OP</sub>, I<sub>OP</sub>). This is the only

stable operating point of the circuit and the system is therefore latch—up free. In the non–latch up free load line case, the IV characteristic of the snapback protection device intersects the load–line in two points (V<sub>OPA</sub>, I<sub>OPA</sub>) and (V<sub>OPB</sub>, I<sub>OPB</sub>). Therefore in this case, the potential for latch—up exists if the system settles at (V<sub>OPB</sub>, I<sub>OPB</sub>) after a transient. Because of this, ESD8011 should not be used for HDMI applications — ESD8104 or ESD8040 have been designed to be acceptable for HDMI applications without latch—up. Please refer to Application Note AND9116/D for a more in—depth explanation of latch—up considerations using ESD8000 series devices.



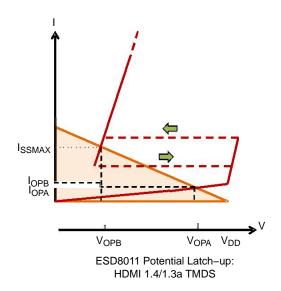



Figure 4. Example Load Lines for Latch-up Free Applications and Applications with the Potential for Latch-up

Table 1. SUMMARY OF SCR REQUIREMENTS FOR LATCH-UP FREE APPLICATIONS

|                    | VBR (min) | IH (min) | VH (min) | ON Semiconductor ESD8000 Series |
|--------------------|-----------|----------|----------|---------------------------------|
| Application        | (V)       | (mA)     | (V)      | Recommended PN                  |
| HDMI 1.4/1.3a TMDS | 3.465     | 54.78    | 1.0      | ESD8104, ESD8040                |
| USB 2.0 LS/FS      | 3.301     | 1.76     | 1.0      | ESD8004, ESD8011                |
| USB 2.0 HS         | 0.482     | N/A      | 1.0      | ESD8004, ESD8011                |
| USB 3.0 SS         | 2.800     | N/A      | 1.0      | ESD8004, ESD8006, ESD8011       |
| DisplayPort        | 3.600     | 25.00    | 1.0      | ESD8004, ESD8006, ESD8011       |

### IEC 61000-4-2 Spec.

| Level | Test Volt-<br>age (kV) | First Peak<br>Current<br>(A) | Current at 30 ns (A) | Current at<br>60 ns (A) |
|-------|------------------------|------------------------------|----------------------|-------------------------|
| 1     | 2                      | 7.5                          | 4                    | 2                       |
| 2     | 4                      | 15                           | 8                    | 4                       |
| 3     | 6                      | 22.5                         | 12                   | 6                       |
| 4     | 8                      | 30                           | 16                   | 8                       |

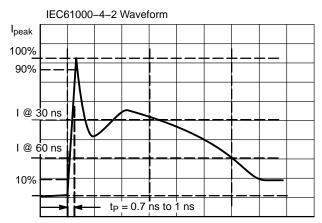



Figure 5. IEC61000-4-2 Spec

### Transmission Line Pulse (TLP) Measurement

Transmission Line Pulse (TLP) provides current versus voltage (I–V) curves in which each data point is obtained from a 100 ns long rectangular pulse from a charged transmission line. A simplified schematic of a typical TLP system is shown in Figure 6. TLP I–V curves of ESD protection devices accurately demonstrate the product's ESD capability because the 10s of amps current levels and under 100 ns time scale match those of an ESD event. This is illustrated in Figure 7 where an 8 kV IEC 61000–4–2 current waveform is compared with TLP current pulses at 8 A and 16 A. A TLP I–V curve shows the voltage at which the device turns on as well as how well the device clamps voltage over a range of current levels.

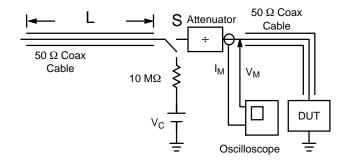



Figure 6. Simplified Schematic of a Typical TLP System

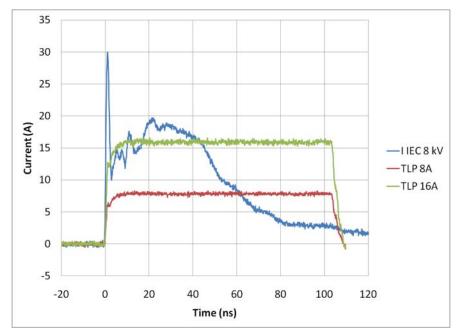
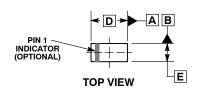
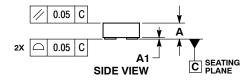


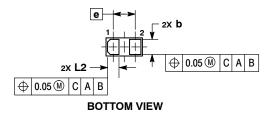

Figure 7. Comparison Between 8 kV IEC 61000-4-2 and 8 A and 16 A TLP Waveforms

### ORDERING INFORMATION

| Device       | Package             | Shipping <sup>†</sup> |
|--------------|---------------------|-----------------------|
| ESD8011MUT5G | X3DFN2<br>(Pb-Free) | 10000 / Tape & Reel   |


<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


HDMI is a registered trademark of HDMI Licensing, LLC.




### X3DFN2, 0.62x0.32, 0.355P, (0201) CASE 152AF **ISSUE A**

**DATE 17 FEB 2015** 



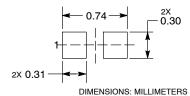




#### NOTES:

- ANTES.

  1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
  2. CONTROLLING DIMENSION: MILLIMETERS.


|     | MILLIMETERS |      |  |
|-----|-------------|------|--|
| DIM | MIN MAX     |      |  |
| Α   | 0.25        | 0.33 |  |
| A1  | -           | 0.05 |  |
| b   | 0.22        | 0.28 |  |
| D   | 0.58        | 0.66 |  |
| E   | 0.28        | 0.36 |  |
| е   | 0.355 BSC   |      |  |
| L2  | 0.17        | 0.23 |  |

### **GENERIC MARKING DIAGRAM\***



X = Specific Device Code M = Date Code

### **RECOMMENDED MOUNTING FOOTPRINT\***



See Application Note AND8398/D for more mounting details

\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

| DOCUMENT NUMBER: | 98AON56472E                       | Electronic versions are uncontrolled except when accessed directly from the Document Reposito<br>Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. |             |
|------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| DESCRIPTION:     | X3DFN2, 0.62X0.32, 0.355P, (0201) |                                                                                                                                                                                  | PAGE 1 OF 1 |

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <a href="www.onsemi.com/site/pdf/Patent-Marking.pdf">www.onsemi.com/site/pdf/Patent-Marking.pdf</a>. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer p

#### **PUBLICATION ORDERING INFORMATION**

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative