<u>MOSFET</u> – Power, Single N-Channel 80 V, 3.7 mΩ, 123 A

Features

- Small Footprint (5x6 mm) for Compact Design
- Low R_{DS(on)} to Minimize Conduction Losses
- Low Q_G and Capacitance to Minimize Driver Losses
- NVMFS6H818NWF Wettable Flank Option for Enhanced Optical Inspection
- AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

MAYIMI IM DATINGS /T 05°C uploss otherwise noted)

ON Semiconductor®

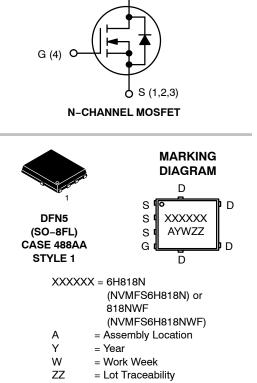
www.onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
80 V	$3.7~\mathrm{m}\Omega$ @ 10 V	123 A

D (5,6)

MAXIMUM RATINGS (T _J = 25°C unless otherwise noted)							
Parameter			Value	Unit			
Drain-to-Source Voltage			80	V			
ate-to-Source Voltage			±20	V			
Steady	$T_{C} = 25^{\circ}C$	۱ _D	123	А			
	T _C = 100°C		87				
State	$T_{C} = 25^{\circ}C$	PD	136	W			
	$T_{\rm C} = 100^{\circ}{\rm C}$		68				
	$T_A = 25^{\circ}C$	۱ _D	20	А			
Steady State	T _A = 100°C		14				
	$T_A = 25^{\circ}C$	PD	3.8	W			
	T _A = 100°C		1.9				
T _A = 25	°C, t _p = 10 μs	I _{DM}	900	А			
$\label{eq:source} \begin{array}{c} \mbox{Operating Junction and Storage Temperature} \\ \mbox{Source Current (Body Diode)} \\ \mbox{Single Pulse Drain-to-Source Avalanche} \\ \mbox{Energy (I}_{L(pk)} = 9.3 \mbox{ A}) \end{array}$			–55 to + 175	°C			
			113	А			
			731	mJ			
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			260	°C			
	neter e Steady State Steady State $T_A = 25$ Storage T biode) Source Av- oldering F	neter e T _C = 25°C T _C = 100°C T _A = 25°C T _A = 100°C	Symbol e Symbol e V _{DSS} a $T_C = 25^{\circ}C$ Ip Steady $T_C = 100^{\circ}C$ Ip Steady $T_C = 100^{\circ}C$ Pp T_C = 100^{\circ}C Tp Steady $T_A = 25^{\circ}C$ Ip Steady $T_A = 25^{\circ}C$ Ip T_A = 100^{\circ}C Tp Ip T_A = 25^{\circ}C, t_p = 10 \mu s Ip Storage Temperature Tj, Tstg biode) Is Source Avalanche EAS oldering Purposes TL	Symbol Value e V _{DSS} 80 e V _{DSS} 80 e V _{GS} ± 20 steady T _C = 25°C I _D 123 Steady T _C = 100°C R7 87 T _C = 100°C PD 136 68 T _A = 25°C PD 136 14 T _A = 25°C PD 3.8 1.9 T _A = 25°C PD 3.8 1.9 T _A = 100°C I _{DM} 900 3.8 1.9 T _A = 25°C, t _p = 10 µs I _{DM} 900 3.8 1.9 T _A = 25°C, t _p = 10 µs I _{DM} 900 3.8 1.9 Storage Temperature I _S 113 3.8 3.8 3.1 Source Avalanche E _{AS} 731 3.1 oldering Purposes			

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case - Steady State	$R_{\theta JC}$	1.1	°C/W
Junction-to-Ambient - Steady State (Note 2)	$R_{\theta JA}$	39	

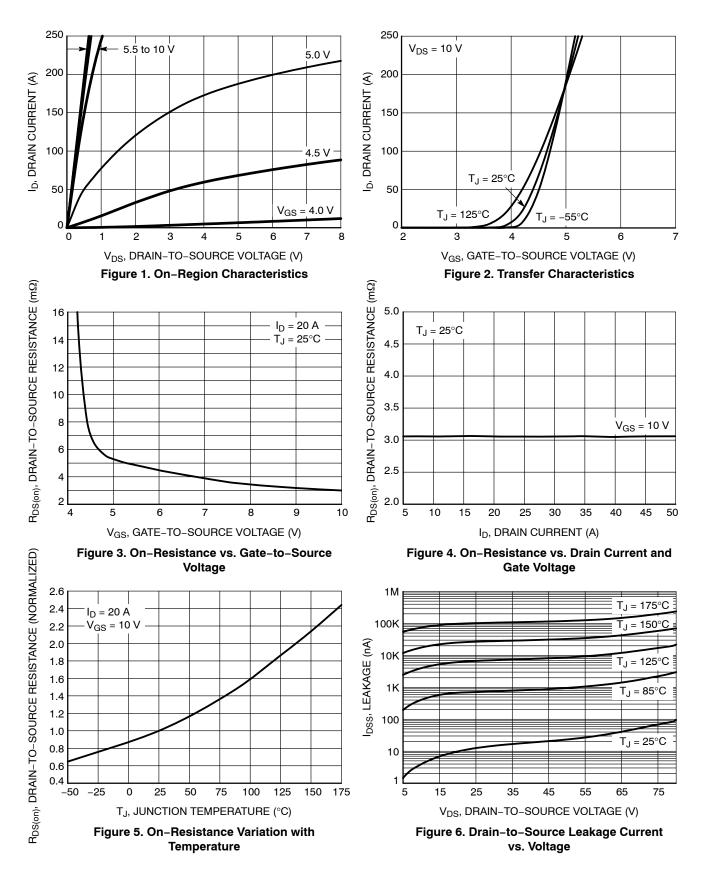
1. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

2. Surface-mounted on FR4 board using a 650 mm², 2 oz. Cu pad.

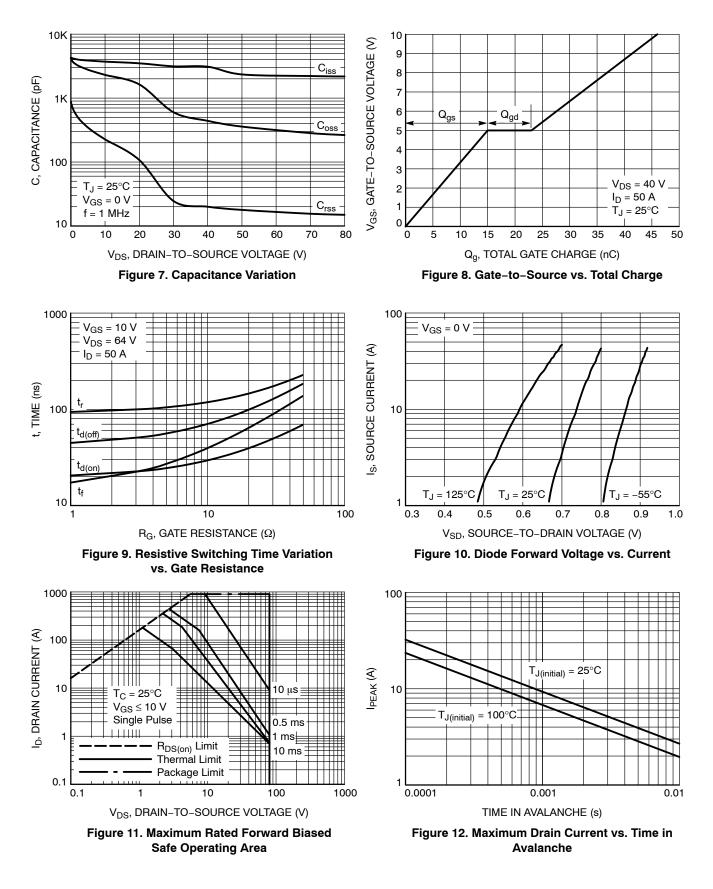
3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle.

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet.


ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit	
OFF CHARACTERISTICS	-							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V_{GS} = 0 V, I_D = 250 μ A		80			V	
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / TJ				39		mV/°C	
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V, T_{J} = 25^{\circ}C$				10		
		V _{DS} = 80 V	T _J = 125°C			100	μA	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS} = 20 V$				100	nA	
ON CHARACTERISTICS (Note 4)								
Gate Threshold Voltage	V _{GS(TH)}	V _{GS} = V _{DS} , I _D	= 190 μA	2.0		4.0	V	
Threshold Temperature Coefficient	V _{GS(TH)} /T _J				7.0		mV/°C	
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 20 A		3.1	3.7	mΩ	
Forward Transconductance	9 _{FS}	V _{DS} =15 V, I _D = 50 A			170		S	
CHARGES, CAPACITANCES & GATE RE	SISTANCE			-				
Input Capacitance	C _{ISS}	$V_{GS} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}, V_{DS} = 40 \text{ V}$ $V_{GS} = 10 \text{ V}, V_{DS} = 40 \text{ V}; \text{ I}_{D} = 50 \text{ A}$			3100		pF	
Output Capacitance	C _{OSS}				440			
Reverse Transfer Capacitance	C _{RSS}				20			
Total Gate Charge	Q _{G(TOT)}				46			
Threshold Gate Charge	Q _{G(TH)}	V _{GS} = 10 V, V _{DS} = 40 V; I _D = 50 A			9.0		nC	
Gate-to-Source Charge	Q _{GS}				15			
Gate-to-Drain Charge	Q _{GD}				8.0			
Plateau Voltage	V _{GP}				5.0		V	
SWITCHING CHARACTERISTICS (Note 5	5)			-				
Turn-On Delay Time	t _{d(ON)}	V_{GS} = 10 V, V_{DS} = 64 V, I _D = 50 A, R _G = 2.5 Ω			22		- ns	
Rise Time	tr				98			
Turn-Off Delay Time	t _{d(OFF)}				49			
Fall Time	t _f				21			
DRAIN-SOURCE DIODE CHARACTERIS	TICS			-				
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	$T_J = 25^{\circ}C$		0.8	1.2		
		$I_{\rm S} = 20 \rm{A}$	T _J = 125°C		0.7		V	
Reverse Recovery Time	t _{RR}	V _{GS} = 0 V, dIS/dt = 100 A/µs, I _S = 50 A			63		ns	
Charge Time	ta				31			
Discharge Time	t _b				32			
Reverse Recovery Charge	Q _{RR}				55		nC	

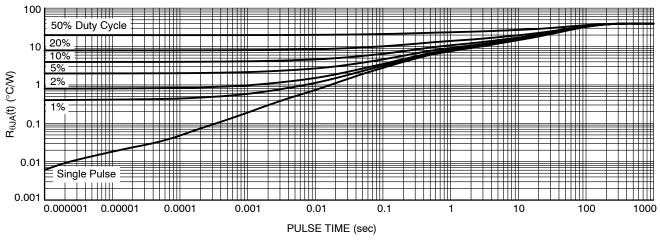

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Pulse Test: pulse width $\leq 300 \ \mu$ s, duty cycle $\leq 2\%$.

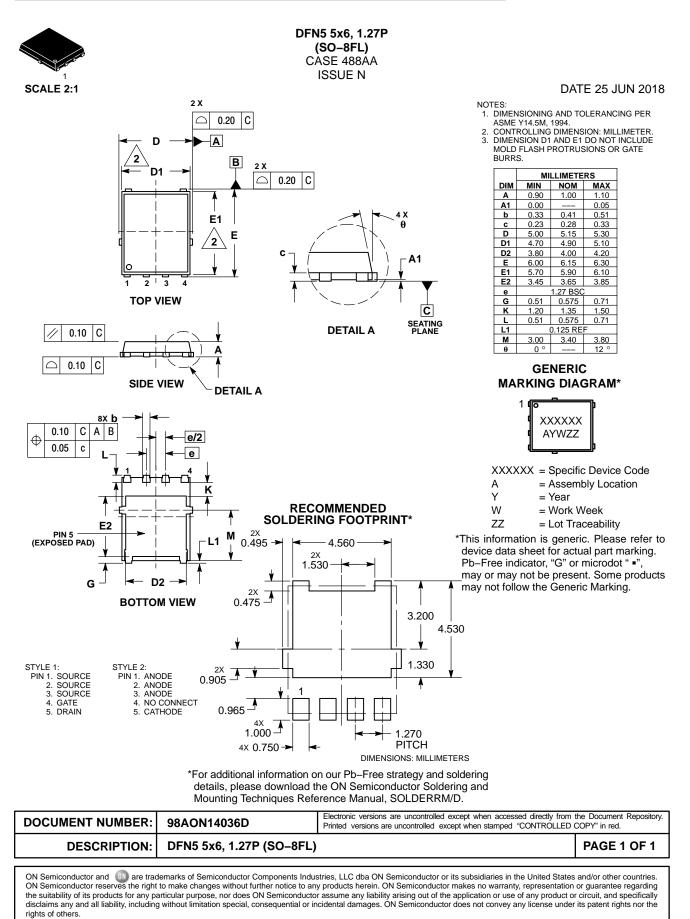
5. Switching characteristics are independent of operating junction temperatures.

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS




Figure 13. Thermal Response

DEVICE ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NVMFS6H818NT1G	6H818N	DFN5 (Pb–Free)	1500 / Tape & Reel
NVMFS6H818NWFT1G	818NWF	DFN5 (Pb-Free, Wettable Flanks)	1500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative