MOSFET - Power, Single N-Channel, DUAL COOL[®], DFN8 5x6

40 V, 0.85 mΩ, 313 A

NTMFSC0D9N04CL

Features

- Advanced Dual-Sided Cooled Packaging
- Ultra Low R_{DS(on)} to Minimize Conduction Losses
- MSL1 Robust Packaging Design
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Typical Applications

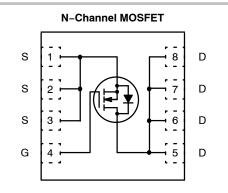
- Orring FET/Load Switching
- Synchronous Rectifier
- DC-DC Conversion

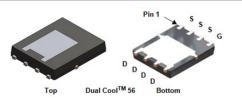
MAXIMUM RATINGS (T_J = 25° C, Unless otherwise specified)

Parar	neter		Symbol	Value	Unit
Drain-to-Source Voltaç	ge		V _{DSS}	40	V
Gate-to-Source Voltag	e-to-Source Voltage		V _{GS}	±20	V
Continuous Drain Current R _{θJC} (Note 2)	Steady State	T _C = 25°C	I _D	313	A
Power Dissipation $R_{\theta JC}$ (Note 2)	Oldic		P _D	167	W
Continuous Drain Current R _{θJA} (Note 1, 2)	Steady State T _A = 25°C		Ι _D	49.5	A
Power Dissipation $R_{\theta JA}$ (Note 1, 2)			PD	3.8	W
Pulsed Drain Current	T _A = 25°	C, t _p = 10 μs	I _{DM}	900	А
Operating Junction and Range	Storage Te	emperature	T _J , T _{stg}	–55 to +175	°C
Source Current (Body [(Body Diode)			169	А
Single Pulse Drain-to- Energy (I _{L(pk)} = 29 A)	Source Ava	llanche	E _{AS}	706	mJ
Lead Temperature Sold dering Purposes (1/8" f			ΤL	300	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

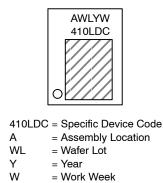
1. Surface-mounted on FR4 board using 1 in² pad size, 1 oz Cu pad.


The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.



ON Semiconductor®

www.onsemi.com


V _{SSS}	R _{SS(ON)} MAX	I _D MAX
40.1/	$0.85~\mathrm{m}\Omega\ensuremath{@}10~\mathrm{V}$	313 A
40 V	1.3 mΩ @ 4.5 V	313 A

DFN8 5x6 CASE 506EG

MARKING DIAGRAM

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

THERMAL CHARACTERISTICS

Symbol	Parameter	Мах	Unit
$R_{\theta JC}$	Junction-to-Case (Bottom) - Steady State (Note 3)	0.9	°C/W
$R_{ extsf{ heta}JC}$	Junction-to-Case (Top) - Steady State (Note 3)	1.4	
$R_{ heta JA}$	Junction-to-Ambient - Steady State (Note 3)	39	

3. The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted.

ELECTRICAL CHARACTERISTICS (T_J = $25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 V, I_D = 2$	50 μΑ	40			V
Drain – to – Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} / T _J	$I_D = 250 \ \mu\text{A}, \text{ ref to } 25^\circ\text{C}$			21.2		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	$V_{GS} = 0 V, V_{DS} = 40 V$ $T_{J} = 25^{\circ}C$				10	μΑ
			T _J = 125°C			100	
Gate-to-Source Leakage Current	I _{GSS}	V _{DS} = 0 V, V _{GS} = 20 V				100	nA
	-						

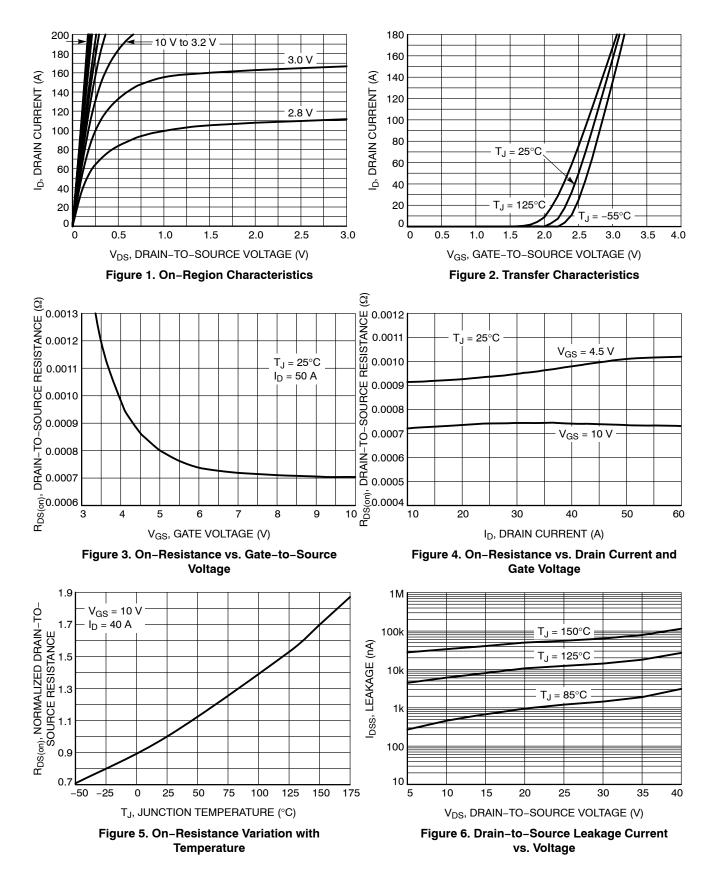
ON CHARACTERISTICS (Note 4)

Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$	1.2		2.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} ^{/ T} J	$I_D = 250 \ \mu A$, ref to $25^{\circ}C$		-5.8		mV/°C
Drain – to – Source On Resistance	R _{DS(on)}	V _{GS} = 10 V, I _D = 50 A		0.65	0.85	mΩ
		V_{GS} = 4.5 V, I _D = 50 A		1	1.3	
Gate-Resistance	R _G	$T_A = 25^{\circ}C$		1.8		Ω

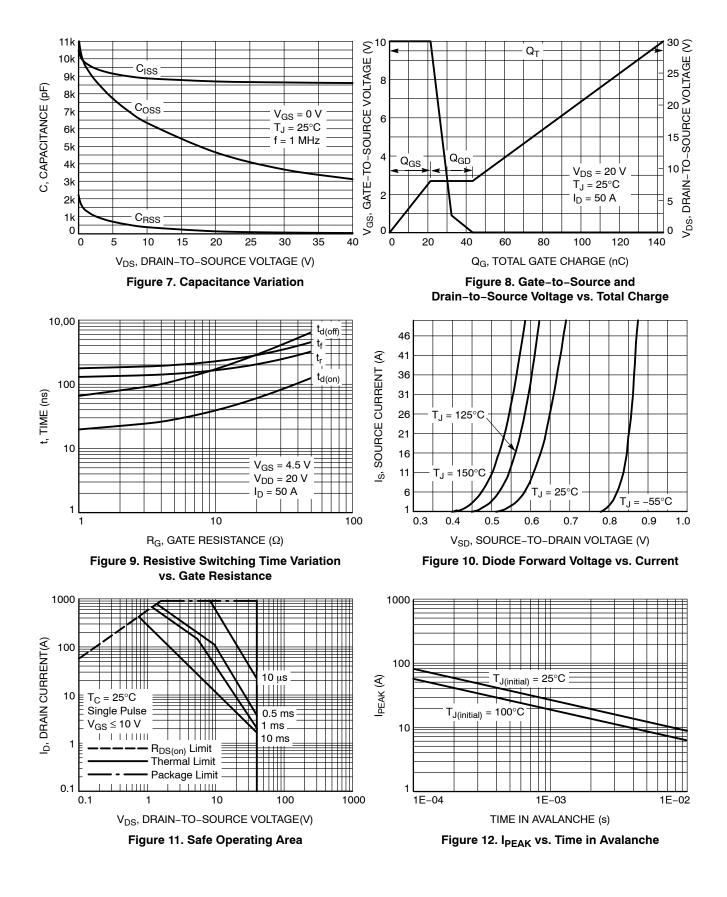
CHARGES & CAPACITANCES

Input Capacitance	C _{ISS}	V_{GS} = 0 V, f = 1 MHz, V_{DS} = 20 V	8500	pF
Output Capacitance	C _{OSS}]	3400	
Reverse Transfer Capacitance	C _{RSS}]	110	
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 4.5 V, V_{DS} = 20 V, I_{D} = 50 A	61	nC
Total Gate Charge	Q _{G(TOT)}	V_{GS} = 10 V, V_{DS} = 20 V, I_{D} = 50 A	143	
Gate-to-Source Charge	Q _{GS}		27	
Gate-to-Drain Charge	Q _{GD}		19	
Plateau Voltage	V _{GP}		2.7	V

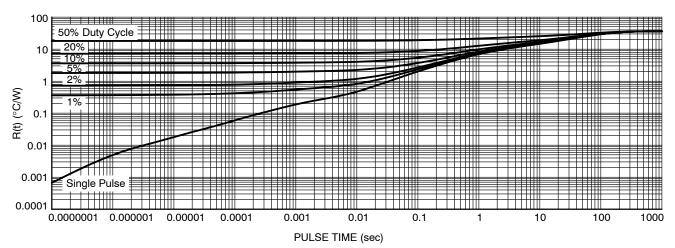
SWITCHING CHARACTERISTICS (Note 4)


Turn – On Delay Time	t _{d(ON)}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 32 \text{ V},$	20.2	ns
Rise Time	t _r	I_D = 50 A, R_G = 2.5 Ω	94.6	
Turn – Off Delay Time	t _{d(OFF)}		77.8	
Fall Time	t _f		111	

DRAIN-SOURCE DIODE CHARACTERISTICS


Forward Diode Voltage	V _{SD}	V_{GS} = 0 V, I _S = 50 A	$T_J = 25^{\circ}C$	0.75	1.2	V
			$T_J = 125^{\circ}C$	0.6		
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 V, dI_S/dt = 1$	00 A/μs,	92		ns
Reverse Recovery Charge	Q _{RR}	I _S = 50 A		170		nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.4. Switching characteristics are independent of operating junction temperatures.


TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

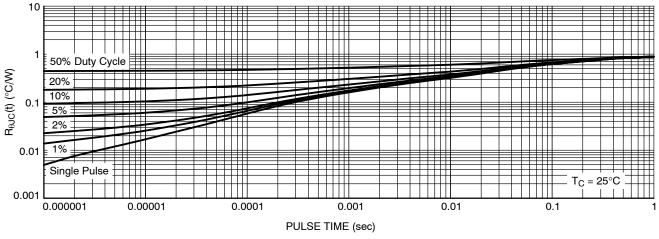
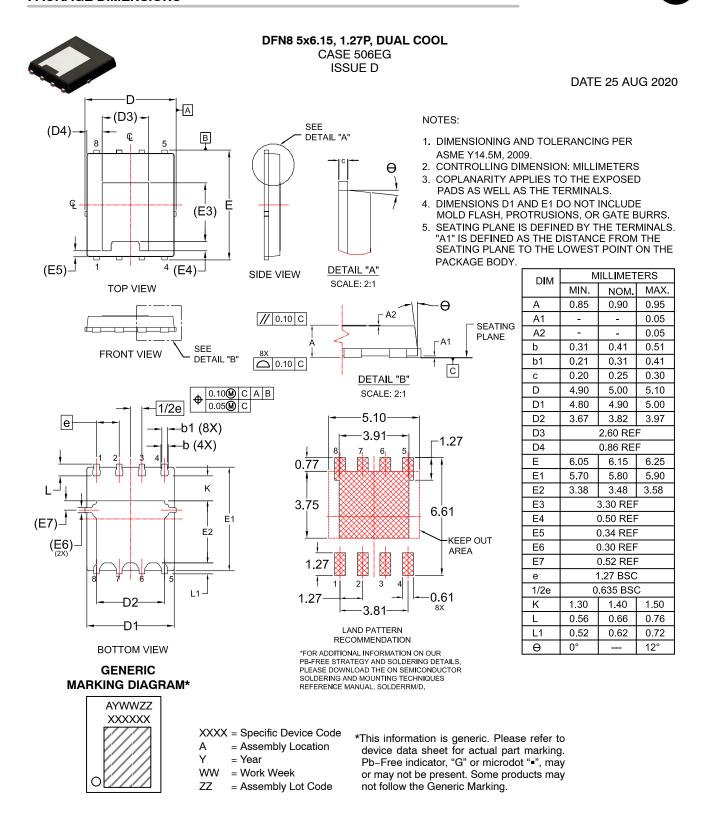



Figure 14. Thermal Characteristics – $R_{\theta JC}(t)$ (°C/W)

ORDERING INFORMATION

Device	Device Marking	Package	Shipping [†]
NTMFSC0D9N04CL	410LDC	DFN8 5x6 (Pb–Free/Halogen Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

DOCUMENT NUMBER:	98AON84257G Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	DFN8 5x6.15, 1.27P, DUAL COOL		PAGE 1 OF 1		
· · · · · · · · · · · · · · · · · · ·					

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the right to others.

© Semiconductor Components Industries, LLC, 2018

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative