
Vishay Semiconductors

www.vishay.com

Hyperfast Rectifier, 30 A FRED Pt®

LINKS TO ADDITIONAL RESOURCES

PRIMARY CHARACTERISTICS									
I _{F(AV)}	30 A								
V _R	650 V								
V _F at I _F	1.4 V								
t _{rr} typ.	33 ns								
T _J max.	175 °C								
Package	TO-247AD 2L								
Circuit configuration	Single								

FEATURES

- Low forward voltage drop
- Hyperfast soft recovery time
- 175 °C operating junction temperature
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION / APPLICATIONS

Hyperfast recovery rectifiers designed with optimized performance of forward voltage drop, hyperfast recovery time, and soft recovery.

The planar structure and the platinum doped life time control guarantee the best overall performance, ruggedness and reliability characteristics.

These devices are intended for use in PFC Boost stage in the AC/DC section of SMPS, inverters or as freewheeling diodes.

The extremely optimized stored charge and low recovery current minimize the switching losses and reduce over dissipation in the switching element and snubbers.

MECHANICAL DATA

Case: TO-247AD 2L

Molding compound meets UL 94 V-0 flammability rating

Terminals: matte tin plated leads, solderable per J-STD-002

ABSOLUTE MAXIMUM RATINGS										
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS						
Repetitive peak reverse voltage	V _{RRM}		650	V						
Average rectified forward current	I _{F(AV)}	T _C = 113 °C	30	^						
Non-repetitive peak surge current	I _{FSM}	T_{C} = 25 °C, t_{p} = 8.3 ms, half sine wave	195	A						
Operating junction and storage temperatures	TJ, T _{Stg}		-55 to +175	°C						

ELECTRICAL SPECIFICATIONS (T_J = 25 °C unless otherwise specified)									
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS			
Breakdown voltage, blocking voltage	V_{BR}, V_{R}	I _R = 100 μA	650	-	-				
Forward valtage	V _F	I _F = 30 A	- 1.8 2.1		V				
Forward voltage		I _F = 30 A, T _J = 150 °C	-	1.4	1.6				
	I _R	$V_{R} = V_{R}$ rated	-	0.02	30				
Reverse leakage current		$T_J = 150 \text{ °C}, V_R = V_R \text{ rated}$	-	-	300	μA			
Junction capacitance	CT	V _R = 650 V	-	22	-	pF			
Series inductance	L _S	Measured lead to lead 5 mm from package body	-	8.0	-	nH			

Revision: 21-Jan-2021

Document Number: 96447

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

COMPLIANT

www.vishay.com

Vishay Semiconductors

DYNAMIC RECOVERY CHARACTERISTICS ($T_J = 25 \degree C$ unless otherwise specified)										
PARAMETER	SYMBOL	TEST CO	ONDITIONS	MIN.	TYP.	MAX.	UNITS			
		$I_F = 1 \text{ A}, dI_F/dt = 100$) Α/μs, V _R = 30 V	-	37	-				
Reverse recovery time	t _{rr}	T _J = 25 °C		-	33	-	ns A			
		T _J = 125 °C		-	88	-				
Dook rooovon ourront	I _{RRM}	T _J = 25 °C	l _F = 30 A dl _F /dt = 1000 A/µs	-	18	-				
Peak recovery current		T _J = 125 °C	$V_{\rm B} = 400 \text{ V}$	-	30	-	A			
Deverse weeks weeks	0	T _J = 25 °C		-	450	-	-			
Reverse recovery charge	Q _{rr}	T _J = 125 °C		-	1350	-	nC			

THERMAL - MECHANICAL SPECIFICATIONS										
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS				
Maximum junction and storage temperature range	T _J , T _{Stg}		-55	-	175	°C				
Thermal resistance, junction to case	R _{thJC}		-	0.7	1.1	°C/W				
Thermal resistance, case to heatsink	R _{thCS}	Mounting surface, flat, smooth, and greased	-	0.5	-					
Weight			-	5.5	-	g				
Weight			-	0.2	-	oz.				
Mounting torque			1.2 (10)	-	2.4 (20)	kgf · cm (lbf · in)				
Marking device		Case style TO-247 2L		EPH	3007L					

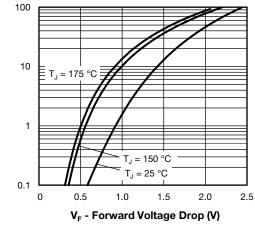


Fig. 1 - Typical Forward Voltage Drop Characteristics

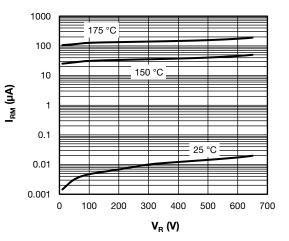


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

VS-EPH3007L-N3

Vishay Semiconductors

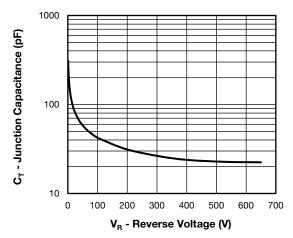


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

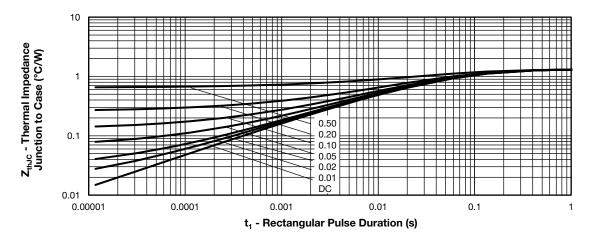
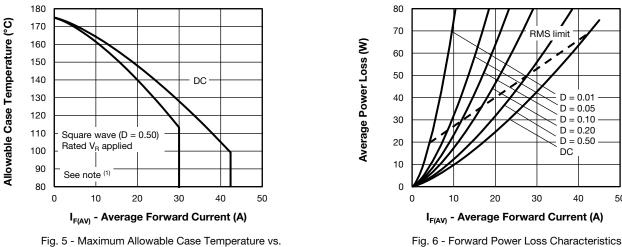



Fig. 4 - Maximum Thermal Impedance ZthJC Characteristics

Average Forward Current

www.vishay.com

Revision: 21-Jan-2021

3

50

RMS limit

D = 0.01

D = 0.05

D = 0.10

D = 0.20

D = 0.50

40

DC

30

20

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Semiconductors

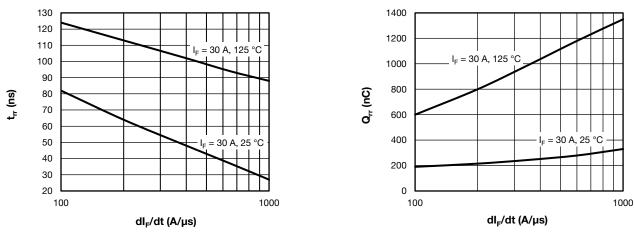
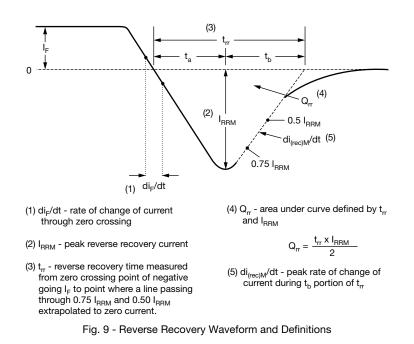



Fig. 7 - Typical Reverse Recovery Time vs. dl_F/dt

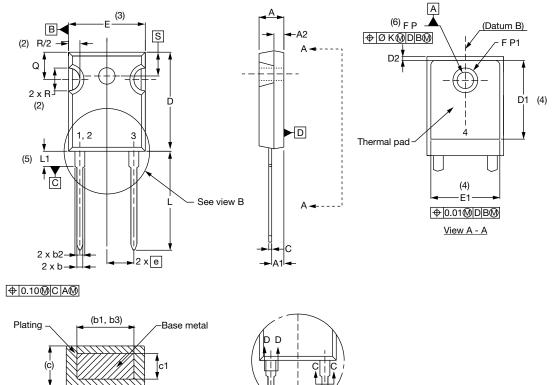
www.vishay.com

SHAY

ORDERING INFORMATION TABLE

Device code	VS-	E	Р	н	30	07	L	-N3
								l
	(1)	(2)	(3)	(4)	(5)	6	(7)	(8)
	\bigcirc	Ŀ	U	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	1 -	· Visł	nay Sem	niconduc	tors pro	oduct		
	2 -	- E=	single c	liode				
	3 -	. P=	TO-247	,				
		-						
	4 -	• H=	hyperfa	st recov	ery time	Э		
	5 -	Cur	rent cod	le (30 =	30 A)			
	6 -	Volt	age coo	le (07 =	650 V)			
	7 .		long lea	, d				
		L -	long loo	iu ii				
	8 -	- Env	rironmer	ntal digit	:			
		-N3	= halog	en-free,	RoHS-	complia	nt and t	totally le

ORDERING INFORMATION (Example)								
PREFERRED P/N	QUANTITY PER TUBE	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION					
VS-EPH3007L-N3	25	500	Antistatic plastic tube					


LINKS TO RELATED DOCUMENTS							
Dimensions	www.vishay.com/doc?95536						
Part marking information	www.vishay.com/doc?95648						

Vishay Semiconductors

TO-247AD 2L

DIMENSIONS in millimeters and inches

Section C - C, D - D

(b, b2)

(4)

View	<u>/ B</u>

SYMBOL	MILLIN	MILLIMETERS		INCHES		NOTES	SYMBOL	MILLIMETERS		INCHES		NOTES
STIVIDUL	MIN.	MAX.	MIN.	MAX.	NOTES		STMDUL	MIN.	MAX.	MIN.	MAX.	NOTES
А	4.65	5.31	0.183	0.209			E	15.29	15.87	0.602	0.625	3
A1	2.21	2.59	0.087	0.102			E1	13.46	-	0.53	-	
A2	1.50	2.49	0.059	0.098			е	5.46	BSC	0.215	5 BSC	
b	0.99	1.40	0.039	0.055			ØК	0.2	254	0.0	010	
b1	0.99	1.35	0.039	0.053			L	19.81	20.32	0.780	0.800	
b2	1.65	2.39	0.065	0.094			L1	3.71	4.29	0.146	0.169	
b3	1.65	2.34	0.065	0.092			ØР	3.56	3.66	0.14	0.144	
С	0.38	0.89	0.015	0.035			Ø P1	-	6.98	-	0.275	
c1	0.38	0.84	0.015	0.033			Q	5.31	5.69	0.209	0.224	
D	19.71	20.70	0.776	0.815	3		R	4.52	5.49	0.178	0.216	
D1	13.08	-	0.515	-	4		S	5.51	BSC	0.217	' BSC	
D2	0.51	1.35	0.020	0.053				•		•		•

Notes

⁽¹⁾ Dimensioning and tolerancing per ASME Y14.5M-1994

(2) Contour of slot optional

(3) Dimension D and E do not include mold flash. These dimensions are measured at the outermost extremes of the plastic body

(4) Thermal pad contour optional with dimensions D1 and E1

(5) Lead finish uncontrolled in L1

⁽⁶⁾ Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154")

⁽⁷⁾ Outline conforms to JEDEC[®] outline TO-247 with exception of dimension A min., D, E min., Q min., S, and note 4

Revision: 28-May-2018 Document Number: 95536 1 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.