Dual Boost Power Module

The NXH80B120H2Q0 is a high-density, integrated power module combines high-performance IGBTs with rugged anti-parallel diodes including on-board thermistor.

Features

- Dual Boost 40 A / 1200 V IGBT + SiC Rectifier Hybrid Module
- 1200 V FSII IGBT $V_{CE(SAT)} = 2.2 \text{ V}$
- 1200 V SiC Diode $V_F = 1.4 \text{ V}$
- Low Inductive Layout
- Solderable Pins
- Thermistor
- Bare Copper and Nickel-Plated DBC Options

Typical Applications

- Solar Inverter
- Uninterruptible Power Supplies
- Energy Storage Systems

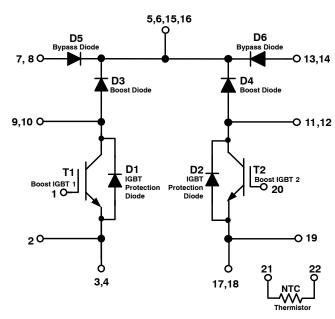
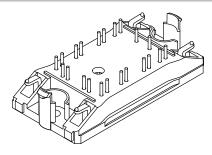
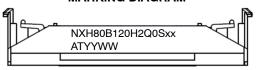
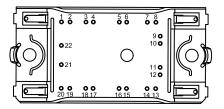



Figure 1. NXH80B120H2Q0SG Schematic Diagram


ON Semiconductor®

www.onsemi.com


Q0BOOST CASE 180AJ

MARKING DIAGRAM

NXH80B120H2Q0Sxx = Device Code AT = Assembly & Test Site Code YYWW = Year and Work Week Code

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 4 of this data sheet.

Table 1. ABSOLUTE MAXIMUM RATINGS (Note 1) T_J = 25°C unless otherwise noted

Rating	Symbol	Value	Unit
BOOST IGBT	•		•
Collector–Emitter Voltage	V _{CES}	1200	V
Gate-Emitter Voltage	V _{GE}	±20	V
Continuous Collector Current @ T _h = 80°C (T _J = 175°C)	I _C	41	Α
Pulsed Collector Current (T _J = 175°C)	I _{Cpulse}	123	Α
Maximum Power Dissipation @ T _h = 80°C (T _J = 175°C)	P _{tot}	103	W
Short Circuit Withstand Time @ V_{GE} = 15 V, V_{CE} = 600 V, $T_{J} \le 150^{\circ}C$	T _{sc}	5	μs
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	150	°C
BOOST DIODE			
Peak Repetitive Reverse Voltage	V _{RRM}	1200	V
Continuous Forward Current @ T _h = 80°C (T _J = 175°C)	I _F	28	А
Repetitive Peak Forward Current (limited by T _J , duty cycle = 10%)	I _{FRM}	75	А
Maximum Power Dissipation @ T _h = 80°C (T _J = 175°C)	P _{tot}	79	W
Surge Forward Current (60 Hz single half-sine wave) (T _J = 25°C)	I _{FSM}	69	А
$I^{2}t$ – value (60 Hz single half–sine wave) (T _J = 150°C)	l ² t	19	A ² s
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	150	°C
BYPASS DIODE / IGBT PROTECTION DIODE			
Peak Repetitive Reverse Voltage	V_{RRM}	1600	V
Continuous Forward Current @ T _h = 80°C (T _J = 175°C)	IF	46	А
Repetitive Peak Forward Current ($T_J = 175^{\circ}C$, t_p limited by T_{Jmax})	I _{FRM}	130	А
Power Dissipation Per Diode @ T _h = 80°C (T _J = 175°C)	P _{tot}	66	W
Minimum Operating Junction Temperature	T _{JMIN}	-40	°C
Maximum Operating Junction Temperature	T _{JMAX}	150	°C
THERMAL PROPERTIES			-
Storage Temperature range	T _{stg}	-40 to 125	°C
INSULATION PROPERTIES			-
Isolation test voltage, t = 1 sec, 60 Hz	V _{is}	3000	V_{RMS}
Creepage distance		12.7	mm

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 2. RECOMMENDED OPERATING RANGES

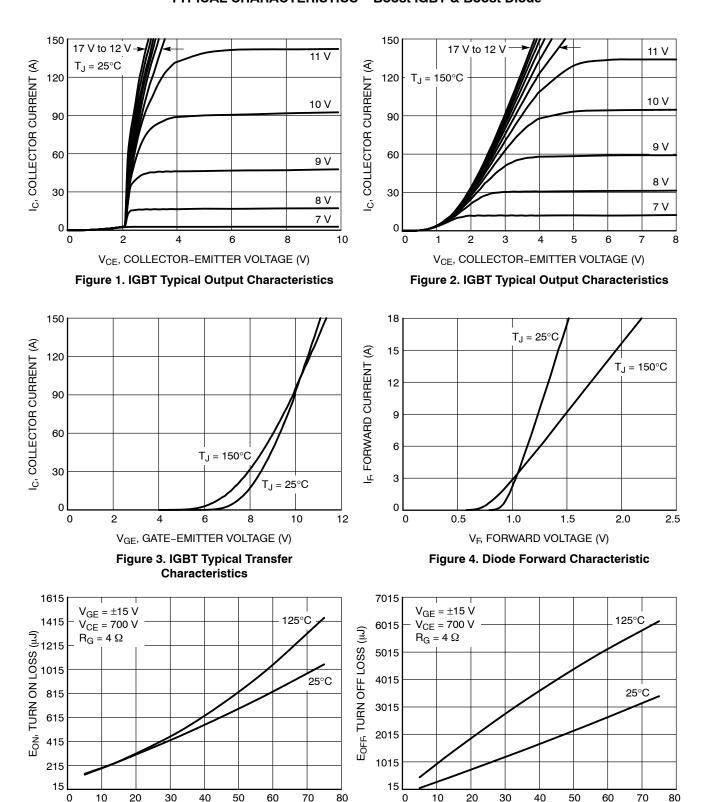
Rating	Symbol	Min	Max	Unit
Module Operating Junction Temperature	T_J	-40	(T _{jmax} -25)	°C

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

^{1.} Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe Operating parameters.

Table 3. ELECTRICAL CHARACTERISTICS T_J = 25°C unless otherwise noted

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
BOOST IGBT CHARACTERISTICS						
Collector-Emitter Cutoff Current	V _{GE} = 0 V, V _{CE} = 1200 V	I _{CES}	-	-	200	μΑ
Collector-Emitter Saturation Voltage	V _{GE} = 15 V, I _C = 40 A, T _J = 25°C	V _{CE(sat)}	-	2.20	2.5	V
	V _{GE} = 15 V, I _C = 40 A, T _J = 150°C		-	2.16	-	
Gate-Emitter Threshold Voltage	$V_{GE} = V_{CE}$, $I_C = 1.5 \text{ mA}$	V _{GE(TH)}	-	5.45	6.4	V
Gate Leakage Current	V _{GE} = 20 V, V _{CE} = 0 V	I _{GES}	=	-	200	nA
Turn-on Delay Time	T _J = 25°C	t _{d(on)}	=	27	_	ns
Rise Time	$V_{CE} = 700 \text{ V}, I_{C} = 40 \text{ A}$ $V_{GE} = \pm 15 \text{ V}, R_{G} = 4 \Omega$	t _r	=	19	_	
Turn-off Delay Time		t _{d(off)}	-	94	-	
Fall Time	7	t _f	-	78	-	
Turn-on Switching Loss per Pulse	7	E _{on}	-	540	_	μJ
Turn-off Switching Loss per Pulse	7	E _{off}	-	1640	_	
Turn-on Delay Time	T _J = 125°C	t _{d(on)}	-	27	_	ns
Rise Time	$V_{CE} = 700 \text{ V, } I_{C} = 40 \text{ A}$ $V_{GE} = \pm 15 \text{ V, } R_{G} = 4 \Omega$	t _r	_	20	_	
Turn-off Delay Time		t _{d(off)}	_	110	_	
Fall Time	7	t _f	_	189	_	
Turn-on Switching Loss per Pulse	7	E _{on}	=	620	_	μJ
Turn-off Switching Loss per Pulse	7	E _{off}	-	3590	_	
Input Capacitance	V _{CE} = 25 V, V _{GE} = 0 V, f = 10 kHz	C _{ies}	=	9700	_	pF
Output Capacitance	7	C _{oes}	-	200	_	
Reverse Transfer Capacitance	7	C _{res}	=	170	_	
Total Gate Charge	V _{CE} = 600 V, I _C = 40 A, V _{GE} = 15 V	Qg	-	400	_	nC
Thermal Resistance - chip-to-heatsink	Thermal grease, Thickness < 100 μ m, λ = 0.84 W/mK	R _{thJH}	-	0.92	_	°C/W
BOOST DIODE CHARACTERISTICS	•			•		•
Diode Reverse Leakage Current	V _R = 1200 V	I _R	=	_	300	μΑ
Diode Forward Voltage	I _F = 15 A, T _J = 25°C	V _F	-	1.42	1.7	V
	I _F = 15 A, T _J = 150°C		-	1.95	_	
Reverse Recovery Time	T _J = 25°C	t _{rr}	-	27	_	ns
Reverse Recovery Charge	$V_{CE} = 700 \text{ V, } I_{C} = 40 \text{ A}$ $V_{GE} = \pm 15 \text{ V, } R_{G} = 4 \Omega$	Q _{rr}	-	280	_	nC
Peak Reverse Recovery Current	VGE - ±13 V, 11G - 4 52	I _{RRM}	-	16	_	Α
Peak Rate of Fall of Recovery Current	7	di/dt	-	1080	_	A/μs
Reverse Recovery Energy	7	E _{rr}	-	130	_	μJ
Reverse Recovery Time	T _J = 125°C	t _{rr}	_	28	_	ns
Reverse Recovery Charge	$V_{CE} = 700 \text{ V}, I_{C} = 40 \text{ A}$ $V_{GE} = \pm 15 \text{ V}, R_{G} = 4 \Omega$	Q_{rr}	_	250	_	nC
Peak Reverse Recovery Current	VGE = ±13 V, NG = 4 52	I _{RRM}	_	15	_	Α
Peak Rate of Fall of Recovery Current	7	di/dt	_	940	_	A/μs
Reverse Recovery Energy	1	E _{rr}	=	110	_	μJ
Thermal Resistance - chip-to-heatsink	Thermal grease, Thickness < 100 μ m, λ = 0.84 W/mK	R _{thJH}	_	1.21	_	°C/W
BYPASS DIODE/IGBT PROTECTION DIO	DE CHARACTERISTICS			•	•	•
Diode Reverse Leakage Current	V _B = 1600 V, T _J = 25°C	I _R		_	100	μА


Table 3. ELECTRICAL CHARACTERISTICS T_{.1} = 25°C unless otherwise noted

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
BYPASS DIODE/IGBT PROTECTION DIO	DE CHARACTERISTICS				•	
Diode Forward Voltage	I _F = 25 A, T _J = 25°C	V _F	_	1.0	1.4	V
	I _F = 25 A, T _J = 150°C		-	0.90	-	
Thermal Resistance - chip-to-heatsink	Thermal grease, Thickness < 100 μ m, $\lambda = 0.84 \text{ W/mK}$	R _{thJH}	-	1.44	=	°C/W
THERMISTOR CHARACTERISTICS					•	
Nominal resistance		R ₂₅	-	22	_	kΩ
Nominal resistance	T = 100°C	R ₁₀₀	-	1486	-	Ω
Deviation of R25		ΔR/R	-5	-	5	%
Power dissipation		P_{D}	-	200	-	mW
Power dissipation constant			-	2	-	mW/K
B-value	B(25/50), tolerance ±3%		-	3950	_	K
B-value	B(25/100), tolerance ±3%		-	3998	_	K

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ORDERING INFORMATION

Orderable Part Number	Marking	Package	Shipping
NXH80B120H2Q0SG	NXH80B120H2Q0SG	Q0BOOST – Case 180AJ Bare Copper DBC, Solder Pins (Pb-Free and Halide-Free)	24 Units / Blister Tray
NXH80B120H2Q0SNG	NXH80B120H2Q0SNG	Q0BOOST – Case 180AJ Nickel-Plated DBC, Solder Pins (Pb-Free and Halide-Free)	24 Units / Blister Tray

 $I_{C}, \mbox{ COLLECTOR CURRENT (A)} \label{eq:collection}$ Figure 5. Typical Turn On Loss vs. IC

 I_{C} , COLLECTOR CURRENT (A) Figure 6. Typical Turn Off Loss vs. IC

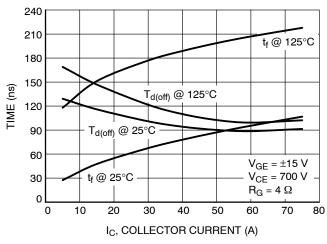


Figure 7. Typical Switching Times vs. IC

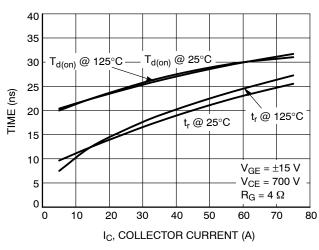


Figure 8. Typical Switching Times vs. IC

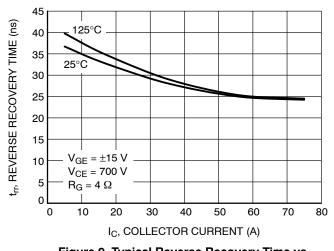


Figure 9. Typical Reverse Recovery Time vs. IC

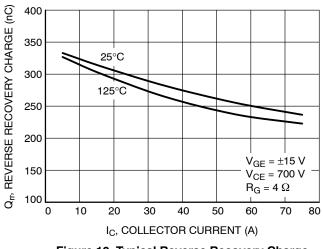


Figure 10. Typical Reverse Recovery Charge vs. IC

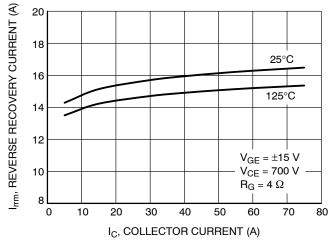


Figure 11. Typical Reverse Recovery Peak Current vs. IC

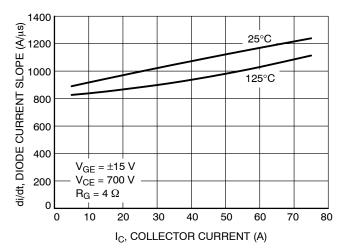
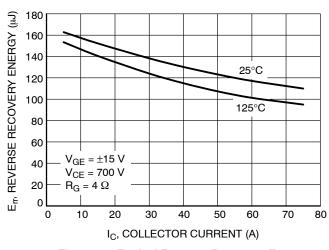



Figure 12. Typical Diode Current Slope vs. IC

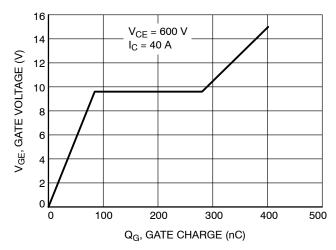


Figure 13. Typical Reverse Recovery Energy vs. IC

Figure 14. Gate Voltage vs. Gate Charge

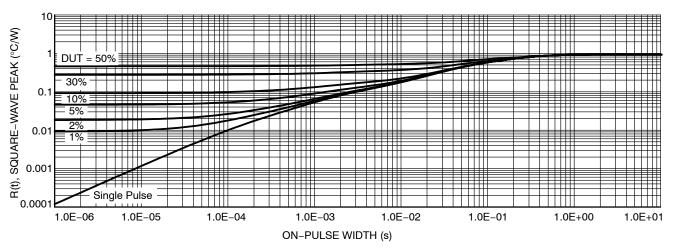


Figure 15. IGBT Transient Thermal Impedance

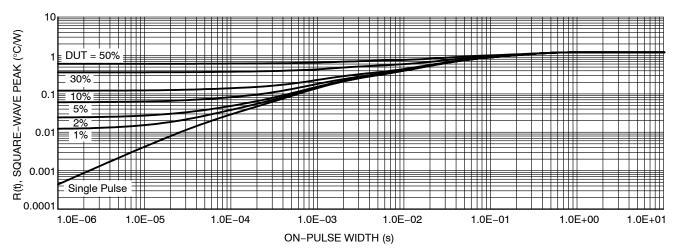
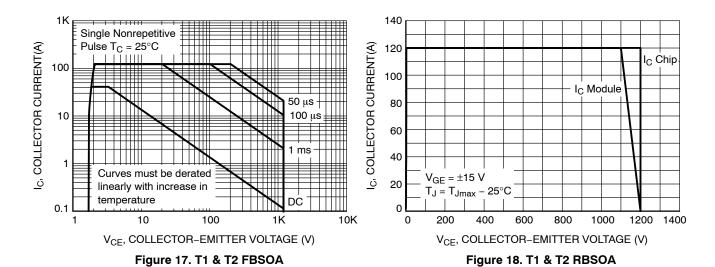



Figure 16. Diode Transient Thermal Impedance Boost Diode

TYPICAL CHARACTERISTICS - IGBT Protection Diode and Bypass Diode

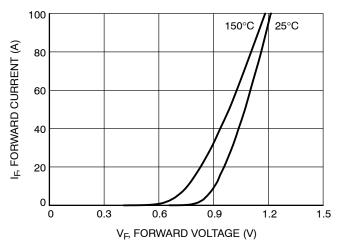


Figure 19. Diode Forward Characteristic

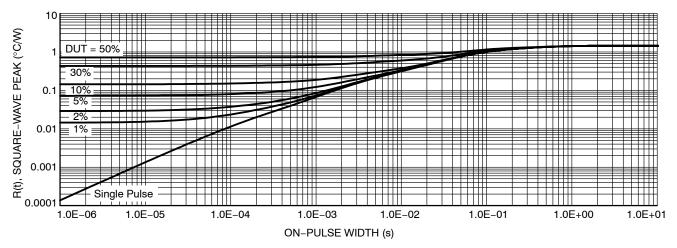


Figure 20. Diode Transient Thermal Impedance Bypass Diode / IGBT Protection Diode

TYPICAL CHARACTERISTICS - Thermistor

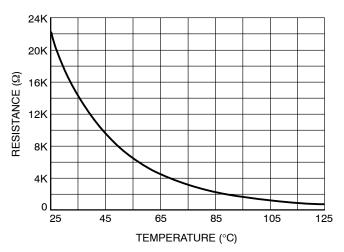
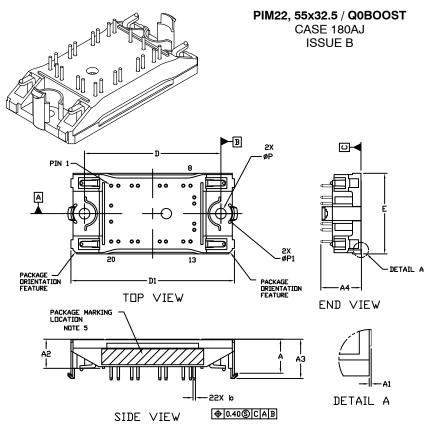
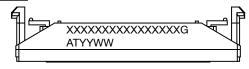



Figure 21. Thermistor Characteristic

DATE 08 NOV 2017

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER. ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSION 6 APPLIES TO THE PLATED TERMINALS AND IS MEASURED BETWEEN 1.00 AND 3.00 FROM THE TERMINAL TIP.
- 4. POSITION OF THE CENTER OF THE TERMINALS
 IS DETERMINED FROM DATUM B THE CENTER OF
 DIMENSION D, X DIRECTION, AND FROM DATUM A,
 Y DIRECTION. POSITIONAL TOLERANCE, AS NOTED
 IN DRAWING, APPLIES TO EACH TERMINAL IN BOTH
 DIRECTIONS.
- PACKAGE MARKING IS LOCATED AS SHOWN ON THE SIDE OPPOSITE THE PACKAGE ORIENTATION FEATURES.


	MILLIMETERS		
DIM	MIN.	NDM.	
Α	13.50	13.90	
A1	0.10	0.30	
A2	11.50	11.90	
A3	15.65	16.05	
A4	16.35 REF		
b	0.95	1.05	
D	54.80	55.20	
D1	65.60	66.20	
E	32.20	32.80	
Р	4.20	4.40	
P1	8.90	9.10	

MOUNTING HOLE POSITION

NOTE 4

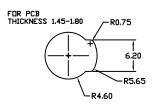
	HOLE P	OSITION		PIN P	NOITIZE	PIN POSITION			PIN PI	NDITIZE	
PIN	Х	Y	PIN	Х	Υ	PIN	Х	Y	PIN	Х	Υ
1	-16.75	-11.25	12	16.75	6.55	1	-16.75	11.25	12	16.75	-6.55
2	-13.85	-11.25	13	15.25	11.25	2	-13.85	11.25	13	15.25	-11.25
3	-8.45	-11.25	14	12.35	11.25	3	-8.45	11.25	14	12.35	-11.25
4	-5.95	-11.25	15	5.35	11.25	4	-5.95	11.25	15	5.35	-11.25
5	2.85	-11.25	16	2.85	11.25	5	2.85	11.25	16	2.85	-11.25
6	5.35	-11.25	17	-5.95	11.25	6	5.35	11.25	17	-5.95	-11.25
7	12.35	-11.25	18	-8.45	11.25	7	12.35	11.25	18	-8.45	-11.25
8	15.25	-11.25	19	-13.85	11.25	8	15.25	11.25	19	-13.85	-11.25
9	16.75	-6.55	20	-16.75	11.25	9	16.75	6.55	20	-16.75	-11.25
10	16.75	-4.05	21	-16.75	3.25	10	16.75	4.05	21	-16.75	-3.25
11	16.75	4.05	22	-16.75	-3.25	11	16.75	-4.05	55	-16.75	3.25
	1 1										

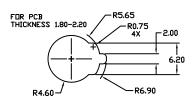
GENERIC MARKING DIAGRAM*

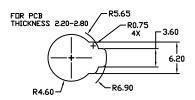
XXXXX = Specific Device Code

a = Pb-Free Package


AT = Assembly & Test Site Code


YYWW = Year and Work Week Code


*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.


DOCUMENT NUMBER:	98AON63481G	Electronic versions are uncontrolled except when accessed directly from the Documer Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red			
DESCRIPTION:	PIM22 55X32.5 / Q0BOOST	(SOLDER PIN)	PAGE 1 OF 2		

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

MOUNTING HOLE DETAIL

DOCUMENT NUMBER:	98AON63481G	Electronic versions are uncontrolled except when accessed directly from the Document Reposi Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	PIM22 55X32.5 / Q0BOOST	(SOLDER PIN)	PAGE 2 OF 2

ON Semiconductor and III are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer pu

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative