

ACPL-M61M 2.5V/3.3V Low-Power 10 MBd Digital **Optocoupler**

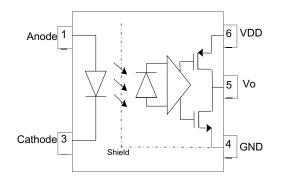
Description

The Broadcom ACPL-M61M is an optocoupler that combines a light emitting diode and an integrated high gain photo detector to address a low power supply need. It supports 2.5V/3.3V supply voltage with guaranteed AC and DC operational parameters at full industrial temperature range -40°C to +125°C. The optocoupler consumes low power across temperature with the LED driving current operating from as low as 1.6 mA.

The output of the detector IC is a CMOS output. The internal Faraday shield provides a guaranteed common mode transient immunity specification of 20 kV/µs.

CAUTION! It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD. The components featured in this datasheet are not to be used in military or aerospace applications or environments.

Features


- Supply voltage: 2.5V/3.3V
- Guaranteed AC and DC performance over wide industrial temperature: -40°C to +125°C
- Low supply current I_{DD}: 1.5 mA max
- Low LED input driving current I_F: 1.6 mA min
- Package: SO-5
- High data rate: 10 MBd min
- Common Mode Rejection (CMR): 20 kV/µs minimum at $V_{CM} = 1000V$
- Safety Approval:
 - UL 1577 3750 V_{rms} for 1 minute

 - IEC/EN/DIN EN 60747-5-5 for Reinforced Insulation

Applications

- Communication interface: RS485, CANBus
- ASIC system interface
- Digital isolation for A/D, D/A conversion

Functional Diagram

Truth Table

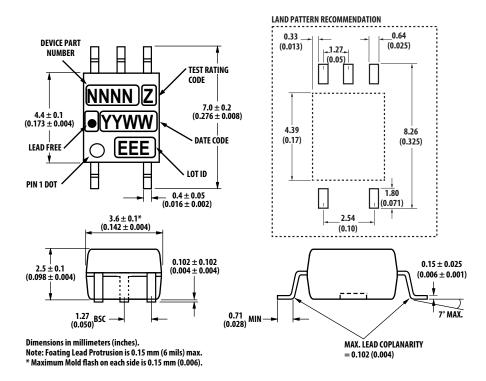
LED	Output
ON	L
OFF	Н

NOTE: A 0.1- μ F bypass capacitor must be connected as close as possible between pins V_{DD} and GND.

Ordering Information

ACPL-M61M is UL Recognized with 3750 $\rm V_{rms}$ for 1 minute per UL1577.

	Option					
Part Number	RoHS Compliant	Package	Surface Mount	Tape & Reel	IEC/EN/DIN EN 60747-5-5	Quantity
ACPL-M61M	-000E	SO-5	Х			100 per tube
	-060E		Х		Х	100 per tube
	-500E		Х	Х		1500 per reel
	-560E		Х	Х	X	1500 per reel


To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example 1:

ACPL-M61M-560E to order product of Small Outline SO-5 package in Tape and Reel packaging with IEC/EN/DIN EN 60747-5-5 Safety Approval in RoHS compliant.

Package Outline Drawing

ACPL-M61M SO-5 Package

Solder Reflow Profile

Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). Non-Halide Flux should be used.

Regulatory Information

- IEC/EN/DIN EN 60747-5-5 (Option 060E only)
- UL Approval under UL 1577, component recognition program up to V_{ISO} = 3750 V_{rms} .
- CSA Approval under CSA Component Acceptance Notice #5, File CA 88324.

Insulation and Safety Related Specifications

Parameter	Symbol	ACPL-M61M	Unit	Conditions
Minimum External Air Gap (External Clearance)	L(101)	5	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (External Creepage)	L(102)	5	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)		0.08	mm	Through insulation distance conductor to conductor, usually the straight line distance thickness between the emitter and detector.
Tracking Resistance (Comparative Tracking Index)	СТІ	175	V	DIN IEC 112/VDE 0303 Part 1.
Isolation Group		Illa		Material Group (DIN VDE 0110, 1/89, Table 1).

IEC/EN/DIN EN 60747-5-5 Insulation Characteristics (Option 060E)

Description	Symbol	Characteristic	Unit
Installation classification per DIN VDE 0110/39, Table 1			
For Rated Mains Voltage ≤ 150 V _{rms}		I – IV	
For Rated Mains Voltage ≤ 300 V _{rms}		I – IV	
For Rated Mains Voltage ≤ 450 V _{rms}		I – III	
Climatic Classification		55/125/21	
Pollution Degree (DIN VDE 0110/39)		2	
Maximum Working Insulation Voltage	V _{IORM}	567	V _{PEAK}
Input to Output Test Voltage, Method b ^a	V_{PR}	1063	V _{PEAK}
V_{IORM} x 1.875 = V_{PR} , 100% Production Test with t_m =1 sec, Partial discharge < 5 pC			
Input to Output Test Voltage, Method a ^a	V_{PR}	907	V _{PEAK}
V_{IORM} x 1.6 = V_{PR} , Type and Sample Test, t_{m} =10 sec, Partial discharge < 5 pC			
Highest Allowable Overvoltage (Transient Overvoltage t _{ini} = 60 sec)	V _{IOTM}	6000	V _{PEAK}
Safety-Limiting Values – maximum values allowed in the event of a failure			
Case Temperature	T _S	150	°C
Input Current	I _{S, INPUT}	150	mA
Output Power	P _{S, OUTPUT}	600	mW
Insulation Resistance at T _S , V _{IO} = 500V	R _S	>10 ⁹	Ω

a. Refer to the optocoupler section of the *Isolation and Control Components Designer's Catalog*, under Product Safety Regulations section, (IEC/EN/DIN EN 60747-5-5) for detailed description of Method a and Method b partial discharge test profiles.

NOTE: These optocouplers are suitable for safe electrical isolation only within the safety limit data. Maintenance of the safety data shall be ensured by means of protective circuits.

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit	Condition	
Storage Temperature	T _S	- 55	150	°C		
Operating Temperature	T _A	-40	125	°C		
Reverse Input Voltage	V_R	_	5	V		
Supply Voltage	V_{DD}	_	4	V		
Average Forward Input Current	I _F	_	8	mA		
Peak Forward Input Current	I _{F(TRAN)}	_	1	А	≤1 µs pulse width, ≤100 pulses per second	
		_	80	mA	≤1 µs pulse width, <10% duty cycle	
Output Current	I _O		10	mA		
Output Voltage	Vo	-0.5	V _{DD} + 0.4	V		
Input Power Dissipation	P _I	_	14	mW		
Output Power Dissipation	P _O	_	8	mW		
Lead Solder Temperature	T _{LS}	_	260°C for 10 sec, 1.6 mm below seating plane			
Solder Reflow Temperature Profile	See Package Outline Drawing section.					

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Operating Temperature	T _A	-40	125	°C
Input Current, Low Level	I _{FL}	0	250	μA
Input Current, High Level	I _{FH}	1.6	3.2	mA
Power Supply Voltage	V_{DD}	2.25	3.6	V
Forward Input Voltage	V _{F(OFF)}	_	0.8	V

Electrical Specifications (DC)

Over recommended temperature ($T_A = -40^{\circ}\text{C}$ to +125°C) and supply voltage (2.25V \leq V_{DD} \leq 2.75V) and (3.0V \leq V_{DD} \leq 3.6V). All typical specifications at V_{DD} = 2.5V, $T_A = 25^{\circ}\text{C}$, unless stated otherwise.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions	Figure
Input Forward Voltage	V _F	0.95	1.33	1.7	V	I _F = 2 mA	1, 2
Input Reverse Breakdown Voltage	BV _R	3	_	_	V	I _R = 10 μA	
Logic High Output Voltage	V _{OH}	V _{DD} – 0.1	V_{DD}	_	V	$I_F = 0 \text{ mA}, I_O = -20 \mu\text{A}$	
		V _{DD} – 0.4	V _{DD} – 0.1	_	V	$I_F = 0 \text{ mA}, I_O = -3.2 \text{ mA}$	
Logic Low Output Voltage	V _{OL}	_	0.01	0.1	V	$I_F = 2 \text{ mA}, I_O = 20 \mu\text{A}$	
		_	0.11	0.4	V	$I_F = 2 \text{ mA}, I_O = 3.2 \text{ mA}$	
Input Threshold Current	I _{TH}	_	0.7	1.3	mA		3
Logic Low Output Supply Current	I _{DDL}	_	0.77	1.5	mA		4
Logic High Output Supply Current	I _{DDH}	_	0.72	1.5	mA		5
Input Capacitance	C _{IN}	_	21	_	pF	f = 1 MHz, V _F = 0V	
Input Diode Temperature Coefficient	$\Delta V_F / \Delta T_A$	_	-1.76	_	mV/°C	I _F = 2 mA	2

Switching Specifications (AC)

Over recommended temperature ($T_A = -40$ °C to +125°C) and supply voltage (2.25V \leq V_{DD} \leq 2.75V) and (3.0V \leq V_{DD} \leq 3.6V). All typical specifications at V_{DD} = 2.5V, T_A = 25°C, unless stated otherwise.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions	Figure	Note
Propagation Delay Time to Logic Low Output	t _{PHL}	_	47	90	ns	I _F = 2 mA, C _L = 15 pF, CMOS signal levels.	6, 7, 8, 9, 10, 11, 12	a, b
Propagation Delay Time to Logic High Output	t _{PLH}	1	49	90	ns		6, 7, 8, 9, 10, 11, 12	a, b
Pulse Width Distortion	PWD	_	2	45	ns		6, 7, 8, 9, 10, 11, 12	a, c
Propagation Delay Skew	t _{PSK}	_	_	50	ns			a, d
Output Rise Time (10% to 90%)	t _R	_	6	_	ns			
Output Fall Time (90% to 10%)	t _F	-	7	_	ns			
Static Common Mode Transient Immunity at Logic High Output	CM _H	20	_	_	kV/μs	V_{CM} = 1000V, T_A = 25 °C, I_F = 0 mA, C_L = 15 pF, CMOS signal levels.	13	a, e
Static Common Mode Transient Immunity at Logic Low Output	CM _L	20	_	_	kV/μs	V_{CM} = 1000V, T_A = 25 °C, I_F = 2 mA, C_L = 15 pF, CMOS signal levels.	13	a, f

- a. Bypass capacitor places at no more than 3 mm from optocoupler's power pins (V_{DD}, GND).
- b. t_{PHL} propagation delay is measured from the 50% (V_{in} or I_F) on the rising edge of the input pulse to the 50% V_{DD} of the falling edge of the V_O signal. t_{PLH} propagation delay is measured from the 50% (V_{in} or I_F) on the falling edge of the input pulse to the 50% level of the rising edge of the V_O signal.
- c. PWD is defined as $|t_{PHL} t_{PLH}|$.
- d. t_{PSK} is equal to the magnitude of the worst-case difference in t_{PHL} and/or t_{PLH} that will be seen between units at any given temperature within the recommended operating conditions.
- e. CM_H is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state.
- f. CM_L is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state.

Package Characteristics

All typical at $T_A = 25$ °C.

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input-Output Insulation	V _{ISO}	3750	_	_	V_{rms}	RH < 50% for 1 min. T _A = 25°C
Input-Output Resistance	R _{I-O}	_	10 ¹⁴	_	Ω	V _{I-O} = 500V
Input-Output Capacitance	C _{I-O}	_	0.5	_	pF	f = 1 MHz, T _A = 25°C

ACPL-M61M-DS101 Broadcom

Figure 1: Typical Input Diode Forward Characteristic

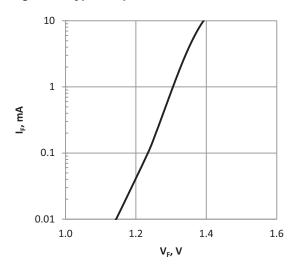


Figure 3: Typical Input Threshold Current I_{TH} vs. Temperature

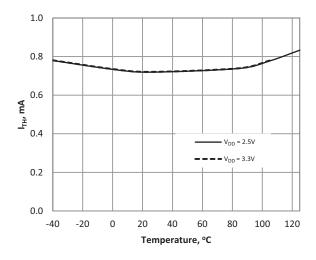


Figure 5: Typical Logic High Output Supply Current I_{DDH} vs. Temperature

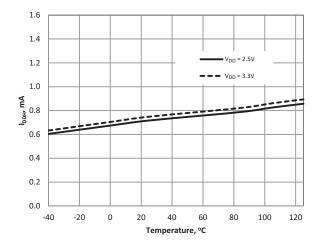


Figure 2: Typical V_F vs. Temperature

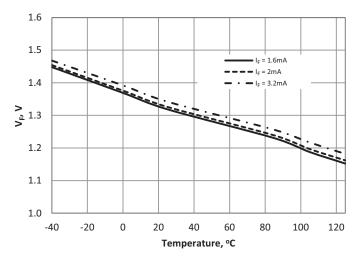


Figure 4: Typical Logic Low Output Supply Current $\mathbf{I}_{\mathrm{DDL}}$ vs. Temperature

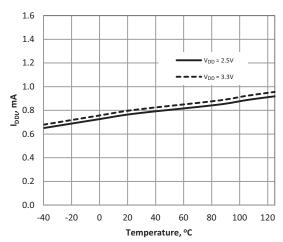


Figure 6: Typical Switching Timing (Propagation Delay, PWD) vs. LED Input Forward Current at 2.5V Supply

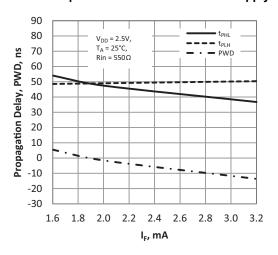


Figure 8: Typical Switching Timing (Propagation Delay, PWD) vs Temperature at 2-mA LED Driving Current, 2.5V Supply

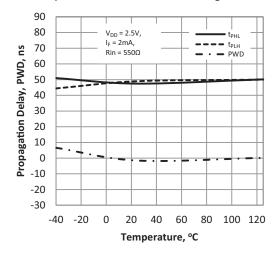


Figure 10: Typical Switching Timing (Propagation Delay, PWD) vs Temperature at 2-mA LED Driving Current, 3.3V Supply

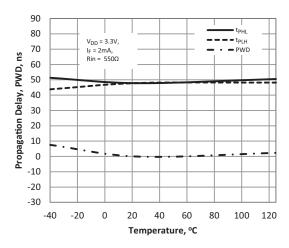


Figure 7: Typical Switching Timing (Propagation Delay, PWD) vs LED Input Forward Current at 3.3V Supply

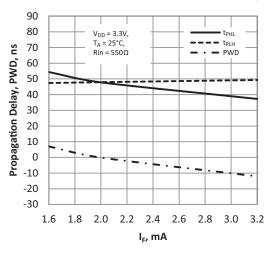


Figure 9: Typical Switching Timing (Propagation Delay, PWD) vs Temperature at 3.2-mA LED Driving Current, 2.5V Supply

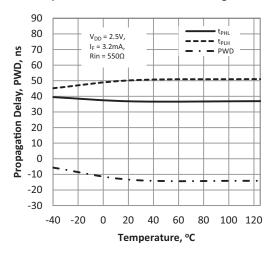
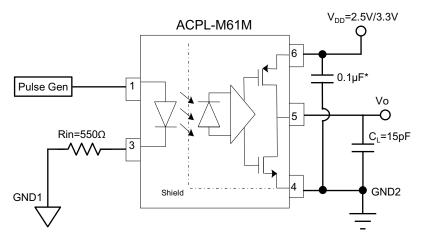



Figure 11: Typical Switching Timing (Propagation Delay, PWD) vs Temperature at 3.2-mA LED Driving Current, 3.3V Supply

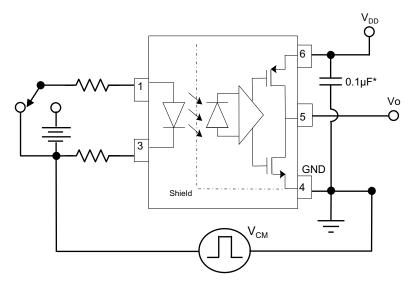
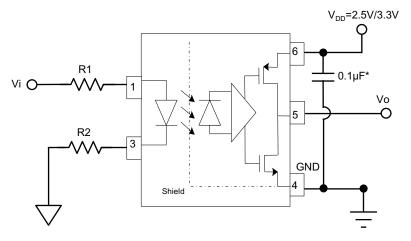


Figure 12: Switching Timing Test Circuit

 $^{^{\}star}$ Bypass capacitor at no more than 3 mm from optocoupler's power pins (V $_{\rm DD},$ GND).

Figure 13: Common Mode Transient Immunity Test Circuit

 $^{^{\}star}$ Bypass capacitor at no more than 3 mm from optocoupler's power pins (V $_{\rm DD},$ GND).


Bypassing and PC Board Layout

The ACPL-M61M provides CMOS logic output due to the high-speed CMOS IC technology used.

The external components required for proper operation are the input limiting resistors and the output's power supply bypass capacitor. It should be placed as close as possible to the power-supply pins, and the recommended value is 0.1 µF.

$$R_T = R_1 + R_2, R_1/R_2 \approx 1.5$$

Figure 14: Recommended Application Circuit

^{*} Bypass capacitor at no more than 3 mm from optocoupler's power pins (V_{DD} , GND).

Broadcom, the pulse logo, Connecting everything, Avago Technologies, Avago, and the A logo are among the trademarks of Broadcom and/or its affiliates in the United States, certain other countries, and/or the EU.

Copyright © 2018 Broadcom. All Rights Reserved.

The term "Broadcom" refers to Broadcom Inc. and/or its subsidiaries. For more information, please visit www.broadcom.com.

Broadcom reserves the right to make changes without further notice to any products or data herein to improve reliability,

function, or design. Information furnished by Broadcom is believed to be accurate and reliable. However, Broadcom does not assume any liability arising out of the application or use of this information, nor the application or use of any product or

circuit described herein, neither does it convey any license under its patent rights nor the rights of others.