IGBT - SMPS II Series
 N-Channel with
 Anti-Parallel Stealth Diode 600 V

FGH50N6S2D

Description

The FGH50N6S2D is a Low Gate Charge, Low Plateau Voltage SMPS II IGBT combining the fast switching speed of the SMPS IGBTs along with lower gate charge, plateau voltage and avalanche capability (UIS). These LGC devices shorten delay times, and reduce the power requirement of the gate drive. These devices are ideally suited for high voltage switched mode power supply applications where low conduction loss, fast switching times and UIS capability are essential. SMPS II LGC devices have been specially designed for:

- Power Factor Correction (PFC) Circuits
- Full Bridge Topologies
- Half Bridge Topologies
- Push-Pull Circuits
- Uninterruptible Power Supplies
- Zero Voltage and Zero Current Switching Circuits

Features

- 100 kHz Operation at $390 \mathrm{~V}, 40 \mathrm{~A}$
- 200 kHz Operation at $390 \mathrm{~V}, 25 \mathrm{~A}$
- 600 V Switching SOA Capability
- Typical Fall Time
- Low Gate Charge
- Low Plateau Voltage
- UIS Rated

90 ns at $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$
70 nC at $\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}$

- Low Conduction Loss
- This is a Pb-Free Device

ON Semiconductor ${ }^{\circledR}$ www.onsemi.com

TO-247-3LD
CASE 340CK

MARKING DIAGRAM

= ON Semiconductor Logo
= Assembly Plant Code
= Numeric Date Code
= Lot Code
= Specific Device Code

ORDERING INFORMATION

See detailed ordering and shipping information on page 2 of this data sheet.

MAXIMUM RATINGS $\left(T_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Parameter		Symbol	Ratings	Unit
Collector to Emitter Breakdown Voltage		$\mathrm{BV}_{\text {CES }}$	600	V
Collector Current Continuous	$\mathrm{TC}=25^{\circ} \mathrm{C}$	I_{C}	75	A
	$\mathrm{TC}=110^{\circ} \mathrm{C}$		60	A
Collector Current Pulsed (Note 1)		$\mathrm{I}_{\text {CM }}$	240	A
Gate to Emitter Voltage Continuous		$\mathrm{V}_{\text {GES }}$	± 20	V
Gate to Emitter Voltage Pulsed		$\mathrm{V}_{\text {GEM }}$	± 30	V
Switching Safe Operating Area at $\mathrm{T}_{J}=150^{\circ} \mathrm{C}$, Figure 2		SSOA	150 A at 600 V	
Pulsed Avalanche Energy, $\mathrm{I}_{\mathrm{CE}}=30 \mathrm{~A}, \mathrm{~L}=1 \mathrm{mH}, \mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}$		$\mathrm{E}_{\text {AS }}$	480	mJ
Power Dissipation Total	$\mathrm{TC}=25^{\circ} \mathrm{C}$	P_{D}	463	W
Power Dissipation Derating	Tc $>25^{\circ} \mathrm{C}$		3.7	W/ ${ }^{\circ} \mathrm{C}$
Operating Junction Temperature Range		T_{J}	-55 to +150	${ }^{\circ} \mathrm{C}$
Storage Junction Temperature Range		$\mathrm{T}_{\text {STG }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Pulse width limited by maximum junction temperature.

PACKAGE MARKING AND ORDERING INFORMATION

Device Marking	Device	Package	Tape Width	Quantity
$50 N 6 S 2 D$	FGH50N6S2D	TO-247	N/A	30

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance Junction-Case, IGBT	$\mathrm{R}_{\text {धJC }}$	0.27	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance Junction-Case, Diode	$\mathrm{R}_{\text {ӨJC }}$	1.1	

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Parameter	Symbol	Test Conditions		Min	Typ	Max	Unit
OFF STATE CHARACTERISTICS							
Collector to Emitter Breakdown Voltage	$\mathrm{BV}_{\text {CES }}$	$\mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}$,		600	-	-	V
Collector to Emitter Leakage Current	ICES	$\mathrm{V}_{C E}=600 \mathrm{~V}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	-	-	250	$\mu \mathrm{A}$
			$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$	-	-	2.8	mA
Gate to Emitter Leakage Current	$\mathrm{I}_{\text {GES }}$	$\mathrm{V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$		-	-	± 250	nA

ON STATE CHARACTERISTICs

Collector to Emitter Saturation Voltage	$\mathrm{V}_{\text {CE(SAT) }}$	$\mathrm{I}_{\mathrm{C}}=30 \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	-	1.9	2.7	V
			$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$	-	1.7	2.2	V
Diode Forward Voltage	V_{EC}	$\mathrm{I}_{\mathrm{EC}}=30 \mathrm{~A}$		-	2.2	2.6	V

DYNAMIC CHARACTERISTICS

Gate Charge	$\mathrm{Q}_{\mathrm{G}(\mathrm{ON})}$	$\mathrm{I}_{\mathrm{C}}=30 \mathrm{~A}, \mathrm{~V}_{\text {CE }}=300 \mathrm{~V}$	$\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}$	-	70	85	nC
			$\mathrm{V}_{\mathrm{GE}}=20 \mathrm{~V}$	-	90	110	nC
Gate to Emitter Threshold Voltage	$\mathrm{V}_{\mathrm{GE}(\mathrm{TH})}$	$\mathrm{I}_{\mathrm{C}}=250 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{GE}}$		3.5	4.3	5.0	V
Gate to Emitter Plateau Voltage	$V_{\text {GEP }}$	$\mathrm{I}_{\mathrm{C}}=30 \mathrm{~A}, \mathrm{~V}_{\text {CE }}=300 \mathrm{~V}$		-	6.5	8.0	V

ELECTRICAL CHARACTERISTICS $\left(T_{C}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted) (continued)

Parameter	Symbol	Test Conditions	Min	Typ	Max	Unit

SWITCHING CHARACTERISTICS

Switching SOA	SSOA	$\begin{aligned} & \mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{G}}=3 \Omega, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \\ & \mathrm{~L}=100 \mu \mathrm{H}, \mathrm{~V}_{\mathrm{CE}}=600 \mathrm{~V} \end{aligned}$	150	-	-	A
Current Turn-On Delay Time	$\mathrm{t}_{\mathrm{d}(\mathrm{ON}) \mathrm{l}}$	IGBT and Diode at $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, $I_{C E}=30 \mathrm{~A}$, $\mathrm{V}_{\mathrm{CE}}=390 \mathrm{~V}$, $\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}$, $\mathrm{R}_{\mathrm{G}}=3 \Omega$, $\mathrm{L}=200 \mu \mathrm{H}$, Test Circuit - Figure 26	-	13	-	ns
Current Rise Time	t_{rl}		-	15	-	ns
Current Turn-Off Delay Time	$\mathrm{t}_{\mathrm{d} \text { (OFF) }}$		-	55	-	ns
Current Fall Time	t_{fl}		-	50	-	ns
Turn-On Energy (Note 2)	EON1		-	260	-	$\mu \mathrm{J}$
Turn-On Energy (Note 2)	EON2		-	330	-	$\mu \mathrm{J}$
Turn-Off Energy Loss (Note 3)	E		-	250	350	$\mu \mathrm{J}$
Current Turn-On Delay Time	$\mathrm{t}_{\mathrm{d}(\mathrm{ON}) \mathrm{I}}$	$\begin{aligned} & \text { IGBT and Diode at } \mathrm{T}_{J}=125^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{CE}}=30 \mathrm{~A}, \\ & \mathrm{~V}_{\mathrm{CE}}=390 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{G}}=3 \Omega,, \\ & \mathrm{~L}=200 \mu \mathrm{H}, \\ & \text { Test Circuit }- \text { Figure } 26 \end{aligned}$	-	13	-	ns
Current Rise Time	trl^{1}		-	15	-	ns
Current Turn-Off Delay Time	$\mathrm{t}_{\mathrm{d} \text { (OFF) }{ }^{\text {I }} \text { I }}$		-	92	150	ns
Current Fall Time	t_{fl}		-	88	100	ns
Turn-On Energy (Note 2)	EON1		-	260	-	$\mu \mathrm{J}$
Turn-On Energy (Note 2)	$\mathrm{E}_{\text {ON2 }}$		-	490	600	$\mu \mathrm{J}$
Turn-Off Energy (Note 3)	E		-	575	850	$\mu \mathrm{J}$
Diode Reverse Recovery Time	$\mathrm{trr}_{\text {r }}$	$\mathrm{I}_{\mathrm{EC}}=30 \mathrm{~A}, \mathrm{dl}_{\mathrm{EC}} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{s}$	-	50	55	ns
		$\mathrm{I}_{\mathrm{EC}}=1 \mathrm{~A}, \mathrm{dl}_{\mathrm{EC}} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{s}$	-	30	42	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
2. Values for two Turn-On loss conditions are shown for the convenience of the circuit designer. EON1 is the turn-on loss of the IGBT only. $\mathrm{E}_{\mathrm{ON} 2}$ is the turn-on loss when a typical diode is used in the test circuit and the diode is at the same TJ as the IGBT. The diode type is specified in Figure 26.
3. Turn-Off Energy Loss (EOFF) is defined as the integral of the instantaneous power loss starting at the trailing edge of the input pulse and ending at the point where the collector current equals zero ($I_{C E}=0 A$). All devices were tested per JEDEC Standard No. 24-1 Method for Measurement of Power Device Turn-Off Switching Loss. This test method produces the true total Turn-Off Energy Loss.

TYPICAL PERFORMANCE CURVES $\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Figure 1. DC Collector Current vs. Case Temperature

Figure 3. Operating Frequency vs. Collector to Emitter Current

Figure 5. Collector to Emitter On-State Voltage

Figure 2. Minimum Switching Safe Operating Area

Figure 4. Short Circuit Withstand Time

Figure 6. Collector to Emitter On-State Voltage
($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted) (continued)

Figure 7. Turn-On Energy Loss vs. Collector to Emitter Current

Figure 9. Turn-On Delay Time vs. Collector to Emitter Current

Figure 11. Turn-Off Delay Time vs. Collector to Emitter Current

Figure 8. Turn-Off Energy Loss vs. Collector to Emitter Current

Figure 10. Turn-On Rise Time vs. Collector to Emitter Current

Figure 12. Fall Time vs. Collector to Emitter Current

TYPICAL PERFORMANCE CURVES $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted) (continued)

Figure 13. Transfer Characteristics

Figure 15. Total Switching Loss vs. Case Temperature

Figure 17. Capacitance vs. Collector to Emitter Voltage

Figure 14. Gate Charge

Figure 16. Total Switching Loss vs. Gate Resistance

Figure 18. Collector to Emitter On-State Voltage vs. Gate to Emitter Voltage

TYPICAL PERFORMANCE CURVES $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted) (continued)

Figure 19. Diode Forward Current vs. Forward Voltage Drop

Figure 21. Recovery Times vs. Rate of Change of Current

Figure 23. Reverse Recovery Softness Factor vs. Rate of Change of Current

Figure 20. Recovery Times vs. Forward Current

Figure 22. Stored Charge vs. Rate of Change of Current

Figure 24. Maximum Reverse Recovery Current vs. Rate of Change of Current

TYPICAL PERFORMANCE CURVES $\left(\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted) (continued)

Figure 25. IGBT Normalized Transient Thermal Impedance, Junction to Case

TEST CIRCUIT AND WAVEFORMS

Figure 26. Inductive Switching Test Circuit

Figure 27. Switching Test Waveforms

Handling Precautions for IGBTs

Insulated Gate Bipolar Transistors are susceptible to gate-insulation damage by the electrostatic discharge of energy through the devices. When handling these devices, care should be exercised to assure that the static charge built in the handler's body capacitance is not discharged through the device. With proper handling and application procedures, however, IGBTs are currently being extensively used in production by numerous equipment manufacturers in military, industrial and consumer applications, with virtually no damage problems due to electrostatic discharge. IGBTs can be handled safely if the following basic precautions are taken:

1. Prior to assembly into a circuit, all leads should be kept shorted together either by the use of metal shorting springs or by the insertion into conductive material such as "ECCOSORBD ${ }^{\text {TM }}$ LD26" or equivalent.
2. When devices are removed by hand from their carriers, the hand being used should be grounded by any suitable means - for example, with a metallic wristband.
3. Tips of soldering irons should be grounded.
4. Devices should never be inserted into or removed from circuits with power on.
5. Gate Voltage Rating - Never exceed the gate-voltage rating of $\mathrm{V}_{\mathrm{GEM}}$. Exceeding the rated V_{GE} can result in permanent damage to the oxide layer in the gate region.
6. Gate Termination - The gates of these devices are essentially capacitors. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turn-on of the device due to voltage buildup on the input capacitor due to leakage currents or pickup.
7. Gate Protection - These devices do not have an internal monolithic Zener diode from gate to emitter. If gate protection is required an external Zener is recommended.

Operating Frequency Information

Operating frequency information for a typical device (Figure 3) is presented as a guide for estimating device performance for a specific application. Other typical frequency vs collector current (I_{CE}) plots are possible using the information shown for a typical unit in Figures 5, 6, 7, 8 , 9 and 11. The operating frequency plot (Figure 3) of a typical device shows $f_{\text {MAX1 }}$ or $f_{\text {MAX2 }}$; whichever is smaller at each point. The information is based on measurements of a typical device and is bounded by the maximum rated junction temperature.
$\mathrm{f}_{\mathrm{MAX} 1}$ is defined by $\mathrm{f}_{\text {MAX1 }}=0.05 /\left(\mathrm{td}(\mathrm{OFF})^{I}+\mathrm{td}_{(\mathrm{ON}) \mathrm{I})}\right.$. Deadtime (the denominator) has been arbitrarily held to 10% of the on-state time for a 50% duty factor. Other definitions are possible. $\mathrm{t}_{\mathrm{d}(\mathrm{OFF}) \mathrm{I}}$ and $\mathrm{t}_{\mathrm{d}(\mathrm{ON}) \mathrm{I}}$ are defined in Figure 27. Device turn-off delay can establish an additional frequency limiting condition for an application other than $\mathrm{T}_{\mathrm{JM}} \cdot \mathrm{t}_{\mathrm{d}(\mathrm{OFF}) \mathrm{I}}$ is important when controlling output ripple under a lightly loaded condition.
$f_{\text {MAX2 }}$ is defined by $f_{\text {MAX2 }}=\left(P_{D}-P_{C}\right) /\left(E_{O F F}+E_{O N 2}\right)$. The allowable dissipation $\left(\mathrm{P}_{\mathrm{D}}\right)$ is defined by $\mathrm{P}_{\mathrm{D}}=\left(\mathrm{T}_{\mathrm{JM}}-\right.$ $\left.\mathrm{T}_{\mathrm{C}}\right) / \mathrm{R}_{\theta \mathrm{JC}}$. The sum of device switching and conduction losses must not exceed P_{D}. A 50% duty factor was used (Figure 3) and the conduction losses $\left(\mathrm{P}_{\mathrm{C}}\right)$ are approximated by $\mathrm{P}_{\mathrm{C}}=\left(\mathrm{V}_{\mathrm{CE}} \times \mathrm{I}_{\mathrm{CE}}\right) / 2$.
$\mathrm{E}_{\mathrm{ON} 2}$ and $\mathrm{E}_{\mathrm{OFF}}$ are defined in the switching waveforms shown in Figure 27. $\mathrm{E}_{\mathrm{ON} 2}$ is the integral of the instantaneous power loss ($\mathrm{I}_{\mathrm{CE}} \times \mathrm{V}_{\mathrm{CE}}$) during turn-on and $\mathrm{E}_{\mathrm{OFF}}$ is the integral of the instantaneous power loss ($\mathrm{I}_{\mathrm{CE}} \times \mathrm{V}_{\mathrm{CE}}$) during turn-off. All tail losses are included in the calculation for $\mathrm{E}_{\mathrm{OFF}}$; i.e., the collector current equals zero $\left(\mathrm{I}_{\mathrm{CE}}=0\right)$

TO-247-3LD SHORT LEAD CASE 340CK ISSUE A

DATE 31 JAN 2019

NOTES: UNLESS OTHERWISE SPECIFIED.
A. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
B. ALL DIMENSIONS ARE IN MILLIMETERS.
C. DRAWING CONFORMS TO ASME Y14.5-2009.
D. DIMENSION A1 TO BE MEASURED IN THE REGION DEFINED BY L1.
E. LEAD FINISH IS UNCONTROLLED IN THE REGION DEFINED BY L1.

GENERIC MARKING DIAGRAM*

	AYWWZZ XXXXXXX XXXXXXX -
XXXX	$=$ Specific Device Code
A	$=$ Assembly Location
Y	$=$ Year
WW	$=$ Work Week
ZZ	$=$ Assembly Lot Code

*This information is generic. Please refer to device data sheet for actual part marking. $\mathrm{Pb}-\mathrm{Free}$ indicator, " G " or microdot " r ", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON13851G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versins are

onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

