

Strong**/**RFET™ IRFH7085PbF

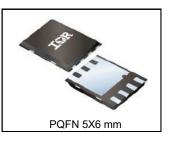
HEXFET[®] Power MOSFET

60V

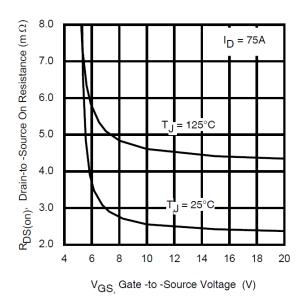
 $2.6m\Omega$

 $3.2m\Omega$

147A


Application

- Half-bridge and full-bridge topologies
- Synchronous rectifier applications
- Resonant mode power supplies
- DC/DC converters
- DC/AC Inverters


6 mm V_{DSS} G D 4 5 R_{DS(on)} typ. 6 2 سس 7 ک D 3 S max D 2 S D S 1 8 ID

Benefits

- Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
- Fully Characterized Capacitance and Avalanche SOA
- Enhanced body diode dV/dt and dl/dt Capability
- Lead-Free, RoHS Compliant

Paga part number	Bookogo Typo	Standard P	ack	Orderable Part Number
Base part number	Package Type	Form	Form Quantity Orderable	
IRFH7085PbF	PQFN 5mm x 6mm	Tape and Reel	4000	IRFH7085TRPbF

160 140 120 Drain Current (A) 100 80 60 ò 40 20 0 25 50 75 100 125 150 0 T_C , Case Temperature (°C)

Fig 1. Typical On-Resistance vs. Gate Voltage

Fig 2. Maximum Drain Current vs. Case Temperature

Absolute Maximum Rating

Symbol	Parameter	Max.	Units
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	23	
I _D @ T _{C(Bottom)} = 25°C Continuous Drain Current, V _{GS} @ 10V ①		147	A
I _D @ T _{C(Bottom)} = 100°C	Continuous Drain Current, V _{GS} @ 10V ①	93	
I _{DM}	Pulsed Drain Current ②	588	Α
$P_D @ T_C = 25^{\circ}C$ Maximum Power Dissipation		156	W
Linear Derating Factor		1.25	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
T _J T _{STG}	Operating Junction and Storage Temperature Range	-55 to + 150	°C

Avalanche Characteristics

Symbol	Parameter	Max.	Units
EAS (Thermally limited)	Single Pulse Avalanche Energy ③	319	
EAS (Thermally limited)	Single Pulse Avalanche Energy	554	mJ
I _{AR}	Avalanche Current ②	See Fig 15, 16, 22e, 22h	Α
E _{AR}	Repetitive Avalanche Energy ②	See Fig 15, 16, 23a, 23b	mJ

	Parameter	Тур.	Max.	Units
R _{θJC} (Bottom)	Junction-to-Case ®	0.5	0.8	
R _{θJC} (Top)	Junction-to-Case ®		20	°C/W
$R_{ ext{ heta}JA}$	Junction-to-Ambient		34	C/W
R _{θJA} (<10s)	Junction-to-Ambient		22	

Static @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	60			V	$V_{GS} = 0V, I_{D} = 250\mu A$
$\Delta V_{(BR)DSS} / \Delta T_J$	_{DSS} / _Δ T _J Breakdown Voltage Temp. Coefficient		43		mV/°C	Reference to 25° C, I _D = 1.0mA
D	Static Drain-to-Source On-Resistance		2.6	3.2	mΩ	V _{GS} = 10V, I _D = 75A
R _{DS(on)}	Static Drain-to-Source On-Resistance		3.6			V _{GS} = 6.0V, I _D = 38A
V _{GS(th)}	Gate Threshold Voltage	2.1		3.7	V	$V_{DS} = V_{GS}, I_D = 150 \mu A$
I _{DSS}	Drain-to-Source Leakage Current			1.0		$V_{\rm DS} = 60V, V_{\rm GS} = 0V$
				150	μA	$V_{DS} = 60V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	54	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -20V
R _G	Gate Resistance		1.4		Ω	

Notes:

- ① Rating refers to the product only with datasheet specified absolute maximum values, maintaining case temperature at 25°C. For higher case temperature please refer to Diagram 2. De-rating will be required based on the actual environmental conditions.
- ② Repetitive rating; pulse width limited by max. junction temperature.
- $\$ Limited by T_{Jmax}, starting T_J = 25°C, L = 113µH, R_G = 50 Ω , I_{AS} = 75A, V_{GS} = 10V.
- (5) Pulse width \leq 400µs; duty cycle \leq 2%.
- 6 C_{oss} eff. (TR) is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- \odot C_{oss} eff. (ER) is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- $\label{eq:rescaled} \begin{tabular}{ll} & R_\theta \mbox{ is measured at } T_J \mbox{ approximately } 90^\circ C. \end{tabular}$
- I Limited by T_{Jmax} , starting $T_J = 25^{\circ}$ C, L = 1mH, $R_G = 50\Omega$, $I_{AS} = 33$ A, $V_{GS} = 10$ V.
- When mounted on 1 inch square PCB (FR-4). Please refer to AN-994 for more details: <u>http://www.irf.com/technical-info/appnotes/an-994.pdf</u>

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	140			S	V _{DS} = 10V, I _D = 75A
Q _g	Total Gate Charge		110	165		I _D = 75A
Q _{gs}	Gate-to-Source Charge		30			V _{DS} = 30V
Q _{gd}	Gate-to-Drain Charge		36		nC	V _{GS} = 10V
Q _{sync}	Total Gate Charge Sync. (Qg - Qgd)		74			
t _{d(on)}	Turn-On Delay Time		13			V _{DD} = 30V
t _r	Rise Time		25			I _D = 30A
t _{d(off)}	Turn-Off Delay Time		63		ns	$R_{G} = 2.7\Omega$
t _f	Fall Time		23			V _{GS} = 10V⑤
C _{iss}	Input Capacitance		6460			V _{GS} = 0V
C _{oss}	Output Capacitance		560		-	V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		380		pF	f = 1.0MHz
Coss eff.(ER)	Effective Output Capacitance (Energy Related)		570		1	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 48V$
Coss eff.(TR)	Output Capacitance (Time Related)		715		-	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 48V$
Diode Cha	racteristics	1	I	1	•	
Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)			130		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ②			588	A	integral reverse p-n junction diode.
V _{SD}	Diode Forward Voltage			1.2	V	T _J = 25°C,I _S = 75A,V _{GS} = 0V ⑤
dv/dt	Peak Diode Recovery dv/dt ④		3.0		V/ns	T _J = 150°C,I _S = 75A,V _{DS} = 60V⑤
4			31			$T_{J} = 25^{\circ}C \qquad V_{DD} = 51V$
t _{rr}	Reverse Recovery Time		30		ns	<u>T」= 125°C</u> I _F = 75A,
	Reverse Recovery Charge		39		nC	<u>T_J = 25°C</u> di/dt = 100A/µs ⑤
				1	1 110	1
Q _{rr}	Neverse Necovery Charge		33			<u>T」= 125°C</u>

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

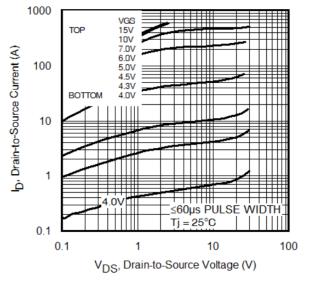


Fig 3. Typical Output Characteristics

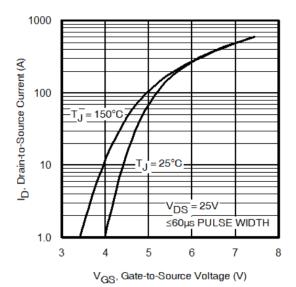
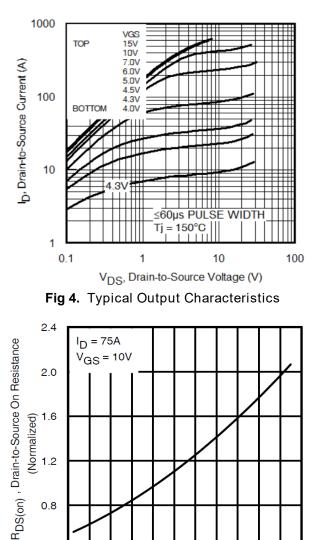



Fig 5. Typical Transfer Characteristics

Fig 7. Typical Capacitance vs. Drain-to-Source Voltage

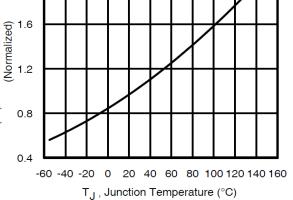


Fig 6. Normalized On-Resistance vs. Temperature

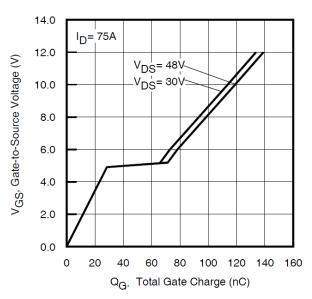
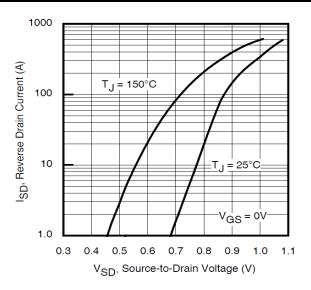



Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage

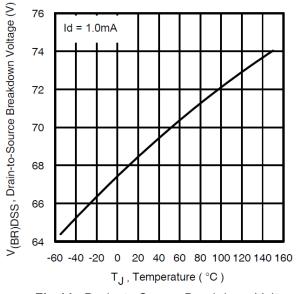


Fig 11. Drain-to-Source Breakdown Voltage

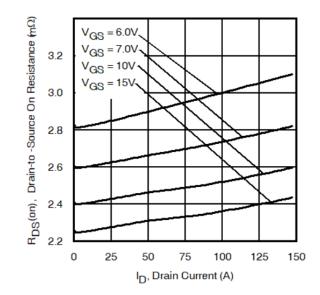


Fig 13. Typical On-Resistance vs. Drain Current

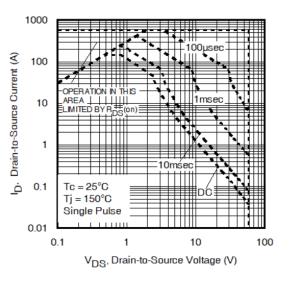


Fig 10. Maximum Safe Operating Area

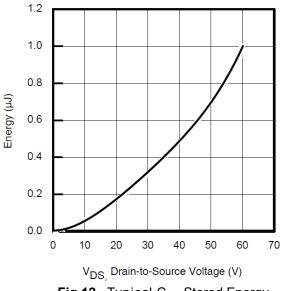
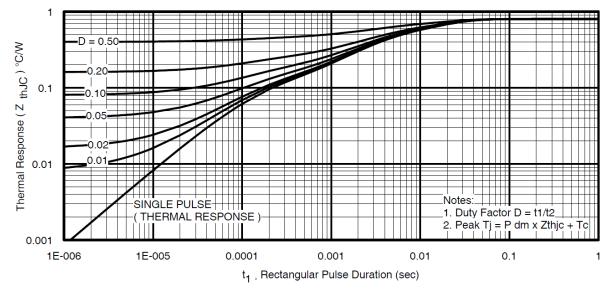



Fig 12. Typical C_{oss} Stored Energy

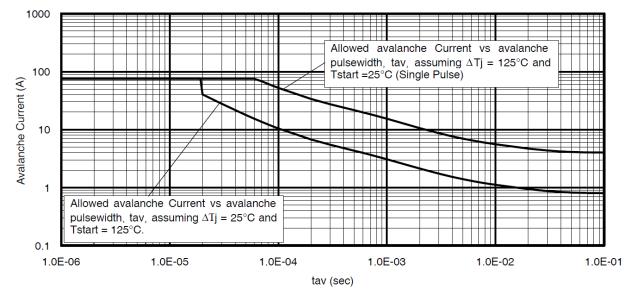


Fig 15. Typical Avalanche Current vs. Pulse Width

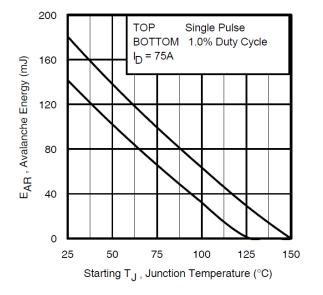


Fig 16. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

1. Avalanche failures assumption:

- Purely a thermal phenomenon and failure occurs at a temperature far in excess of Timax. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long asT_{imax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 22a, 22b.
- 4. $P_{D (ave)}$ = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage
- increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{imax} (assumed as 25°C in Figure 14, 16). t_{av} = Average time in avalanche.

 - D = Duty cycle in avalanche = tav $\cdot f$ $Z_{thJC}(D, t_{av})$ = Transient thermal resistance, see Figures 13) PD (ave) = 1/2 ($1.3 \cdot BV \cdot I_{av}$) = $\Delta T/Z_{thJC}$
 - $I_{av} = 2\Delta T / [1.3 \cdot BV \cdot Z_{th}]$
 - $E_{AS (AR)} = P_{D (ave)} t_{av}$

İnfineon

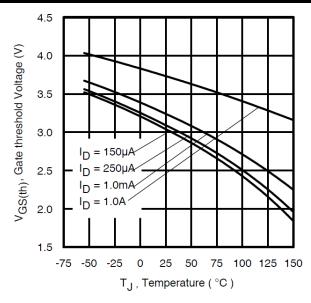


Fig 17. Threshold Voltage vs. Temperature

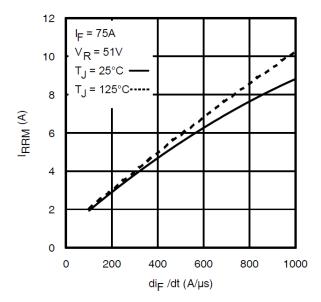


Fig 19. Typical Recovery Current vs. dif/dt

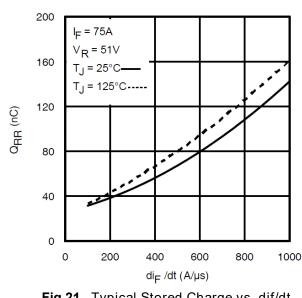
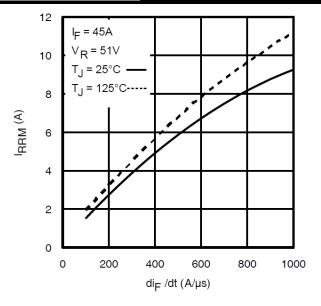



Fig 21. Typical Stored Charge vs. dif/dt

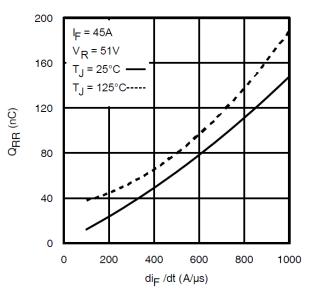


Fig 20. Typical Stored Charge vs. dif/dt

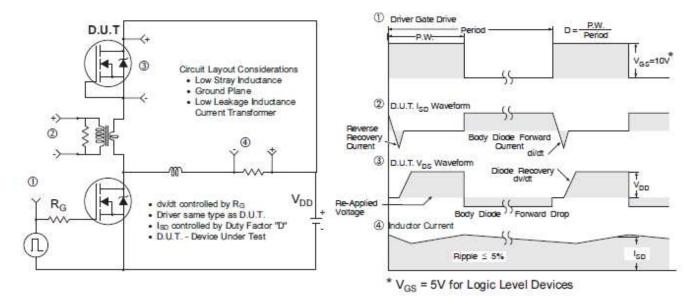


Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET[®] Power MOSFETs

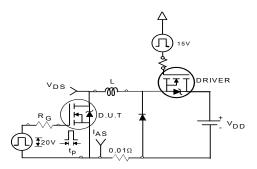


Fig 23a. Unclamped Inductive Test Circuit

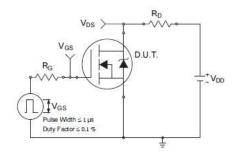


Fig 24a. Switching Time Test Circuit

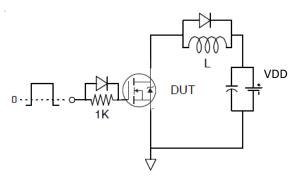


Fig 25a. Gate Charge Test Circuit

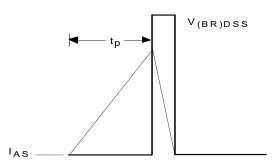
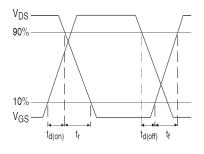
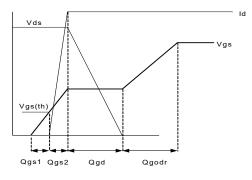
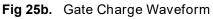
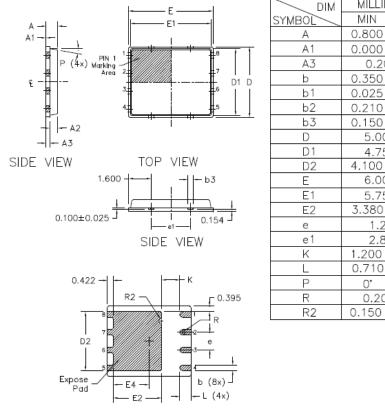


Fig 23b. Unclamped Inductive Waveforms


Fig 24b. Switching Time Waveforms

PQFN 5x6 Outline "B" Package Details

BOTTOM VIEW

A1	0.000	0.050	0.0000	0.0020	
A3	0.20	0 REF	0.007	'9 REF	
b	0.350	0.470	0.0138	0.0185	
b1	0.025	0.125	0.0010	0.0049	
b2	0.210	0.410	0.0083	0.0161	
b3	0.150	0.450	0.0059	0.0177	
D	5.00	0 BSC	0.196	9 BSC	
D1	4.75	0 BSC	0.187	0 BSC	
D2	4.100	4.300	0.1614	0.1693	
Е	6.000 BSC		0.2362 BSC		
E1	5.75	0 BSC	0.2264 BSC		
E2	3.380	3,780	0.1331	0.1488	
е	1.27	70 REF	0.0500 REF		
e1	2.80	0 REF	0.1102 REF		
K	1.200	1.420	0.0472	0.0559	
L	0.710	0.900	0.0280	0.0354	
Р	0°	12°	0*	12°	
R	0.200) REF	0.007	9 REF	
R2	0.150	0.200	0.0059	0.0079	

MILLIMITERS

MAX

0.900

MIN

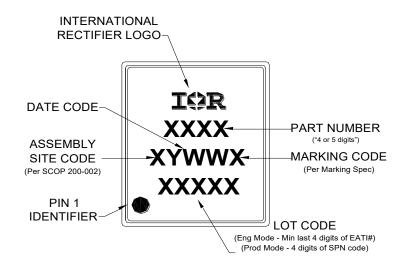
INCH

MAX

0.0543

MIN

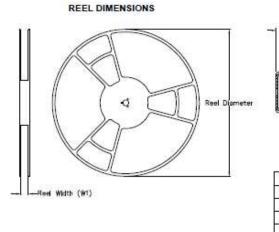
0.0315


Note:

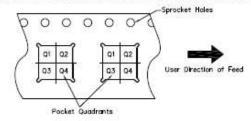
- Dimensions and toleranceing confirm to ASME Y14.5M-1994
- Dimension L represents terminal full back from package edge up to 0.1mm is acceptable
- Coplanarity applies to the expose Heat Slug as well as the terminal
- 4. Radius on terminal is Optional

For more information on board mounting, including footprint and stencil recommendation, please refer to application note AN-1136: http://www.irf.com/technical-info/appnotes/an-1136.pdf

For more information on package inspection techniques, please refer to application note AN-1154: http://www.irf.com/technical-info/appnotes/an-1154.pdf


PQFN 5x6 Part Marking

Note: For the most current drawing please refer to IR website at <u>http://www.irf.com/package/</u>


PQFN 5x6 Tape and Reel

ю \ <u>ф</u> ф	- Φ Φ	<u> </u>	<u> </u>	<u> </u>
1		~ ~	ΨΨ.	-
21	∲ () o	Bo
16			1	1(1

CODE	DESCRIPTION
Ao	Dimension design to accommodate the component width
Bo	Dimension design to accommodate the component lenght
Ko	Dimension design to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Note: All dimension are nominal

Package Type	Reel Diameter (Inch)	QTY	Reel Width W1 (mm)	Ao (mm)	Bo (mm)	Ko (mm)	P1 (mm)	W (mm)	Pin 1 Quadrant
5 X 6 PQFN	13	4000	12.4	6.300	5.300	1.20	8.00	12	Q1

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information

Qualification level	Industrial (per JEDEC JESD47F [†] guidelines)		
Moisture Sensitivity Level	PQFN 5mm x 6mm	MSL1 (per JEDEC J-STD-020D ^{†)}	
RoHS Compliant	Yes		

+ Applicable version of JEDEC standard at the time of product release.

Revision History

Date	Rev.	Comments
11/7/2014	2.1	 Added E_{AS (L=1mH)} = 554mJ on page 2 Added note 9 "Limited by T_{Jmax}, starting T_J = 25°C, L = 1mH, R_G = 50Ω, I_{AS} = 33A, V_{GS} =10V" on page 2 Added Pd @ Tc = 25°C on Absolute Max Rating table on page 2
3/17/2015	2.2	Updated package outline and tape and reel on pages 9 and 10.
4/16/2020	2.3	 Updated datasheet based on IFX template. Updated Datasheet based on new current rating and application note :App- AN_1912_PL51_2001_180356

Trademarks of Infineon Technologies AG

µHVIC[™], µIPM[™], µPFC[™], AU-ConvertIR[™], AURIX[™], C166[™], CanPAK[™], CIPOS[™], CIPURSE[™], CoolDP[™], CoolGaN[™], COOLiR[™], CoolMOS[™], CoolSET[™], CoolSiC[™], DAVE[™], DI-POL[™], DirectFET[™], DrBlade[™], EasyPIM[™], EconoBRIDGE[™], EconoDUAL[™], EconoPACK[™], EconoPIM[™], EiceDRIVER[™], eupec[™], FCOS[™], GaNpowIR[™], HEXFET[™], HITFET[™], HybridPACK[™], iMOTION[™], IRAM[™], ISOFACE[™], IsoPACK[™], LEDrivIR[™], LITIX[™], MIPAQ[™], ModSTACK[™], my-d[™], NovalithIC[™], OPTIGA[™], OptiMOS[™], ORIGA[™], PowIRaudio[™], PowIRStage[™], PrimePACK[™], PrimeSTACK[™], PROFET[™], PRO-SIL[™], REAL3[™], SmartLEWIS[™], SOLID FLASH[™], SPOC[™], StrongIRFET[™], SupIRBuck[™], TEMPFET[™], TRENCHSTOP[™], TriCore[™], UHVIC[™], XHP[™], XMC[™]

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2016-04-19 Published by Infineon Technologies AG	IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").	
81726 Munich, Germany	With respect to any examples, hints or any typical	
© 2016 Infineon Technologies AG. All Rights Reserved.	values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement	
Do you have a question about this document?	of intellectual property rights of any third party.	1
Email: erratum@infineon.com	In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and	1
Document reference	standards concerning customer's products and	
ifx1	any use of the product of Infineon Technologies in customer's applications.	
	The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical	i

intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, **Infineon Technologies' products may** not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.