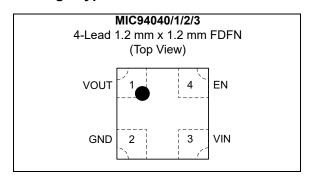


28 m Ω R_{DS(ON)} 3A High-Side Load Switch in 1.2 mm x 1.2 mm FDFN Package


Features

- 28 mΩ R_{DS(ON)}
- 3A Continuous Operating Current
- Space-Saving 1.2 mm x 1.2 mm 4-Lead FDFN Package
- Input Voltage Range: 1.7V to 5.5V
- Internal Level Shift for CMOS/TTL Control Logic
- · Ultra-Low Quiescent Current
- · Micropower Shutdown Current
- Soft-Start: MIC94042, MIC94043
- Load Discharge Circuit: MIC94041, MIC940483
- · Ultra-Fast Turn-Off Time
- –40°C to +125°C Junction Operating Temperature

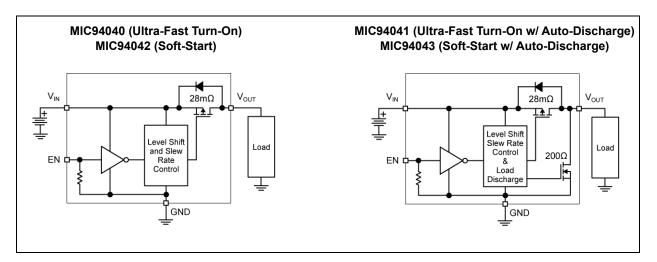
Applications

- · Cellular Phones
- Portable Navigation Devices (PND)
- · Personal Media Players (PMP)
- · Ultra-Mobile PCs
- Portable Instrumentation
- · Other Portable Applications
- PDA
- · Industrial and Datacom Equipment

Package Type

General Description

The MIC94040, MIC94041, MIC94042, and MIC94043 are a family of high-side load switches designed to operate from 1.7V to 5.5V input voltage. The load switch pass element is an internal $28~m\Omega~R_{DS(ON)}$ P-channel MOSFET which enables the device to support up to 3A of continuous current. Additionally, the load switch supports 1.5V logic level control and shutdown features in a tiny 1.2 mm x 1.2 mm 4-lead FDFN package.


The MIC94040 and MIC94041 feature rapid turn on, while the MIC94042 and MIC94043 provide a slew rate controlled soft-start turn-on of 100 μ s. The soft-start feature is provided to prevent an in-rush current event from pulling down the input supply voltage.

The MIC94041 and MIC94043 feature an active load discharge circuit which switches in a 200Ω load when the switch is disabled to automatically discharge a capacitive load.

An active pull-down on the enable input keeps the MIC94040/1/2/3 in a default OFF state until the enable pin is pulled above 1.2V. Internal level shift circuitry allows low voltage logic signals to switch higher supply voltages. The enable voltage can be as high as 5.5V and is not limited by the input voltage.

The MIC94040/1/2/3 operating voltage range makes them ideal for Lithium ion and NiMH/NiCad/Alkaline battery powered systems, as well as non-battery powered applications. The devices provide low quiescent current and low shutdown current to maximize battery life.

Typical Application Circuits

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Input Voltage (V _{IN})	+6V
Enable Voltage (V _{EN})	+6V
Continuous Drain Current (I _D) (Note 1)	
T _A = +25°C	±3A
T _A = +85°C	±2A
Pulsed Drain Current (I _{DP}) (Note 2)	
Continuous Diode Current (I _S) (Note 3)	–50 mA
ESD Rating (HBM, Note 4)	
Operating Ratings ††	
Input Voltage (V _{IN})	+1.7V to +5.5V

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

†† Notice: The device is not guaranteed to function outside its operating ratings.

- Note 1: With thermal contact to PCB. See Thermal Considerations section.
 - 2: Pulse width <300 µs with <2% duty cycle.
 - 3: Continuous body diode current conduction (reverse conduction, i.e. V_{OUT} to V_{IN}) is not recommended.
 - 4: Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5 k Ω in series with 100 pF.

ELECTRICAL CHARACTERISTICS

Electrical Characteristics: $T_A = +25$ °C, **bold** values indicate -40°C $\le T_A \le +85$ °C, unless noted.

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions	
Enable Threshold Voltage	V _{EN_TH}	0.4	_	1.2	V	V_{IN} = 1.7V to 4.5V, I_{D} = -250 μ A	
Ouissant Cumant			_	0.1	1		$V_{\rm IN}$ = $V_{\rm EN}$ = 5.5V, $I_{\rm D}$ = OPEN Measured on $V_{\rm IN}$ MIC94040/1
Quiescent Current	IQ	_	7	μA V		$V_{\rm IN}$ = $V_{\rm EN}$ = 5.5V, $I_{\rm D}$ = OPEN Measured on $V_{\rm IN}$ MIC94042/3	
Enable Input Current	I _{EN}	1	2.5	4	μA	$V_{IN} = V_{EN} = 5.5V$, $I_D = OPEN$	
Quiescent Current (Shutdown)	I _{SHUT-Q}	-	0.1	1	μA	V_{IN} = +5.5V, V_{EN} = 0V, I_{D} = OPEN Measured on V_{IN}	
OFF State Leakage Current	I _{SHUT-SWITCH}	_	0.1	1	μA	V_{IN} = +5.5V, V_{EN} = 0V, I_{D} = SHORT Measured on V_{IN} , Note 1	
		_	28	55		V_{IN} = +5.0V, I_{D} = -100 mA, V_{EN} = 1.5V	
		_	30	60		V_{IN} = +4.5V, I_{D} = -100 mA, V_{EN} = 1.5V	
P-Channel	Б	1	33	65	0	V_{IN} = +3.6V, I_{D} = -100 mA, V_{EN} = 1.5V	
Drain-to-Source ON Resistance	R _{DS(ON)}		45	90	mΩ	V_{IN} = +2.5V, I_{D} = -100 mA, V_{EN} = 1.5V	
		_	72	145		V _{IN} = +1.8V, I _D = -100 mA, V _{EN} = 1.5V	
		_	82	160		V _{IN} = +1.7V, I _D = -100 mA, V _{EN} = 1.5V	

Note 1: Measured on the MIC94040YFL and MIC94042YFL.

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics: T_A = +25°C, **bold** values indicate –40°C ≤ T_A ≤ +85°C, unless noted.

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Load Discharge Resistance	R _{DISCHARGE}	_	250	400	Ω	V _{IN} = +3.6V, I _{TEST} = 1 mA, V _{EN} = 0V MIC94041/3
Dynamic Electrical Characteristics						
Turn On Dalay	t _{ON_DLY}	_	0.97	1.5		V _{IN} = +3.6V, I _D = -100 mA, V _{EN} = 1.5V MIC94040, MIC94041
Turn-On Delay		50	106	185	μs	V _{IN} = +3.6V, I _D = -100 mA, V _{EN} = 1.5V MIC94042, MIC94043
Town On Die a Time		0.5	0.9	5		V _{IN} = +3.6V, I _D = -100 mA, V _{EN} = 1.5V MIC94040, MIC94041
Turn-On Rise Time	t _{ON_RISE}	50	116	200	μs	V _{IN} = +3.6V, I _D = -100 mA, V _{EN} = 1.5V MIC94042, MIC94043
Turn-Off Delay Time	t _{OFF_DLY}	_	100	200	ns	$V_{IN} = +3.6V$, $I_{D} = -100$ mA, $V_{EN} = 0V$
Turn-Off Fall Time	t _{OFF_FALL}	_	20	100	ns	$V_{IN} = +3.6V$, $I_{D} = -100$ mA, $V_{EN} = 0V$

Note 1: Measured on the MIC94040YFL and MIC94042YFL.

TEMPERATURE SPECIFICATIONS

Parameters	Symbol	Min.	Тур.	Max.	Units	Conditions		
Temperature Ranges								
Junction Temperature Range	T_J	-4 0	_	+125	°C	_		
Storage Temperature Range	T _S	- 55	_	+150	°C	_		
Package Thermal Resistances								
Thermal Resistance, 4-Ld FDFN 1.2 mm x 1.2 mm	θJC	_	90	_	°C/W	_		

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +125°C rating. Sustained junction temperatures above +125°C can impact the device reliability.

2.0 TYPICAL PERFORMANCE CURVES

Note:

The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

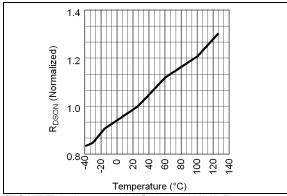


FIGURE 2-1: MIC94040/1/2/3 R_{DS(ON)} Variance vs. Temperature.

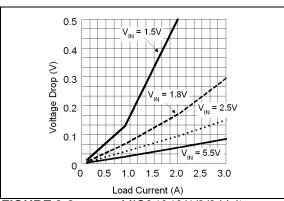


FIGURE 2-2: MIC94040/1/2/3 Voltage Drop vs. Load Current.

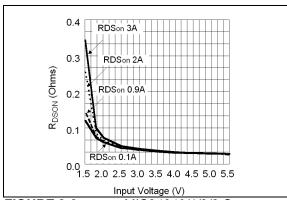


FIGURE 2-3: MIC94040/1/2/3 On Resistance vs. Input Voltage.

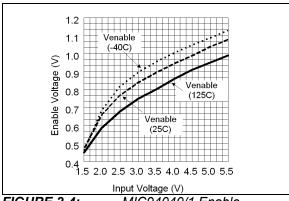


FIGURE 2-4: MIC94040/1 Enable Threshold vs. Input Voltage.

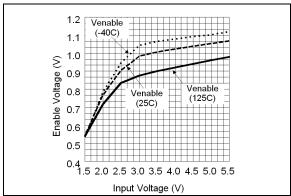


FIGURE 2-5: MIC94042/3 Enable Threshold vs. Input Voltage.

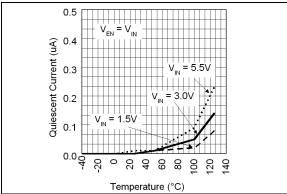
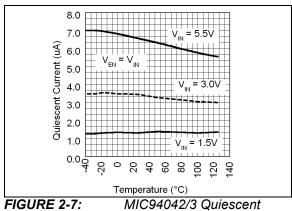



FIGURE 2-6: MIC94040/1 Quiescent Current vs. Temperature.

Current vs. Temperature.

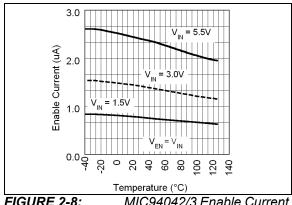
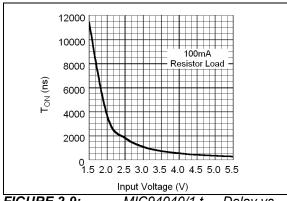
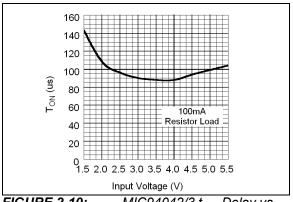




FIGURE 2-8: MIC94042/3 Enable Current vs. Temperature.

FIGURE 2-9: MIC94040/1 t_{ON} Delay vs. Input Voltage.

FIGURE 2-10: MIC94042/3 t_{ON} Delay vs. Input Voltage.

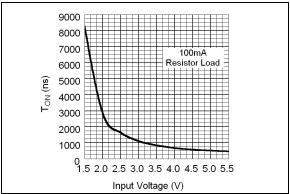


FIGURE 2-11: MIC94040/1 Rise Time vs. Input Voltage.

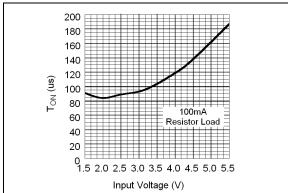


FIGURE 2-12: MIC94042/3 Rise Time vs. Input Voltage.

FIGURE 2-13: MIC94040/1 Turn-On Rise Time vs. Temperature.

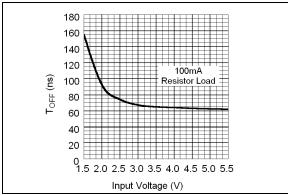


FIGURE 2-14: MIC94042/3 t_{OFF} Delay vs. Input Voltage.

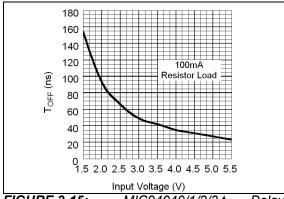


FIGURE 2-15: MIC94040/1/2/3 t_{OFF} Delay vs. Input Voltage.

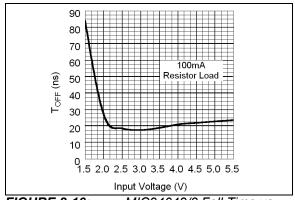


FIGURE 2-16: MIC94042/3 Fall Time vs. Input Voltage.

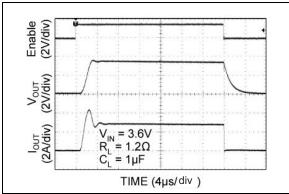
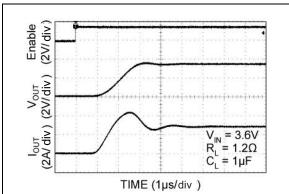
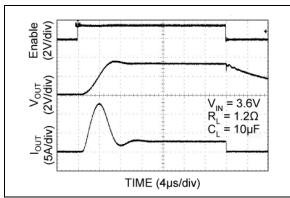




FIGURE 2-17: MIC94040 Turn-On/Turn-Off Timing.

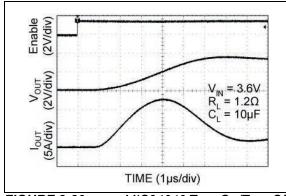
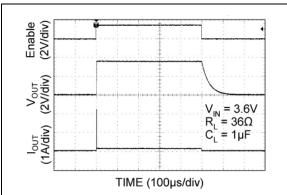
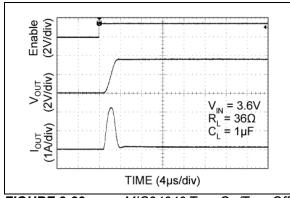


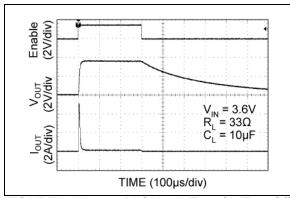
FIGURE 2-18: MIC94040 Turn-On/Turn-Off Timing.


FIGURE 2-19: Timing.

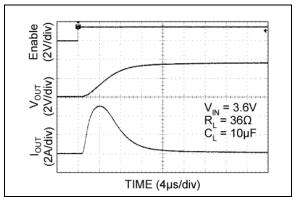
MIC94040 Turn-On/Turn-Off


FIGURE 2-20: Timing.

MIC94040 Turn-On/Turn-Off


FIGURE 2-21: Timing.

MIC94040 Turn-On/Turn-Off


FIGURE 2-22: Timing.

MIC94040 Turn-On/Turn-Off

FIGURE 2-23:

MIC94040 Turn-On/Turn-Off Timing.

FIGURE 2-24: Timing.

MIC94040 Turn-On/Turn-Off

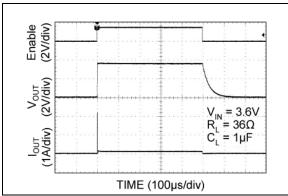
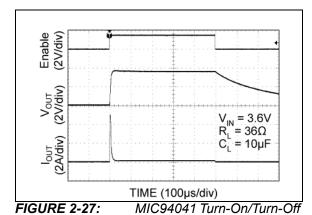



FIGURE 2-25: MIC94041 Turn-On/Turn-Off Timing.

FIGURE 2-26: MIC94041 Turn-On/Turn-Off Timing.

Timing.

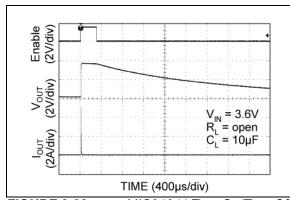


FIGURE 2-28: MIC94041 Turn-On/Turn-Off Timing.

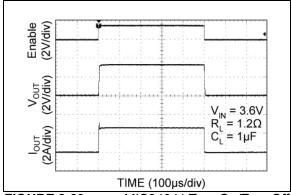


FIGURE 2-29: MIC94041 Turn-On/Turn-Off Timing.

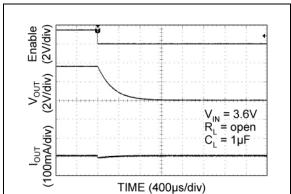


FIGURE 2-30: MIC94041 Turn-On/Turn-Off Timing.

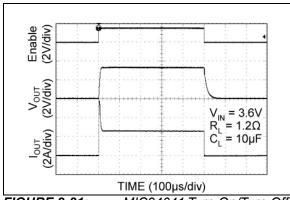


FIGURE 2-31: MIC94041 Turn-On/Turn-Off Timing.

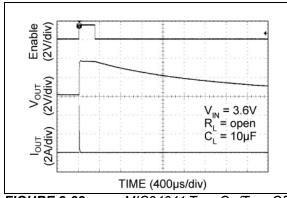


FIGURE 2-32: MIC94041 Turn-On/Turn-Off Timing.



FIGURE 2-33: MIC94042 Turn-On/Turn-Off Timing.

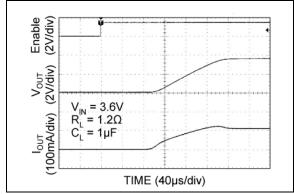


FIGURE 2-34: MIC94042 Turn-On/Turn-Off Timing.

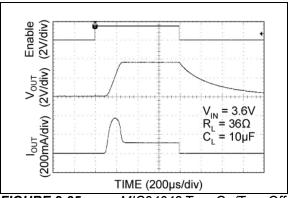


FIGURE 2-35: MIC94042 Turn-On/Turn-Off Timing.

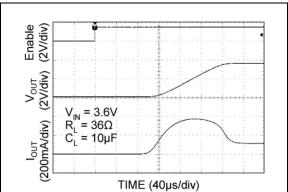


FIGURE 2-36: MIC94042 Turn-On/Turn-Off Timing.

FIGURE 2-37: MIC94042 Turn-On/Turn-Off Timing.

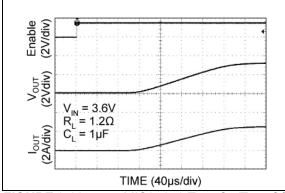


FIGURE 2-38: MIC94042 Turn-On/Turn-Off Timing.

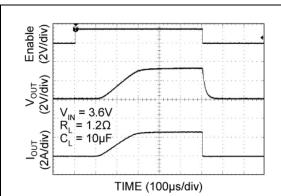


FIGURE 2-39: MIC94042 Turn-On/Turn-Off Timing.

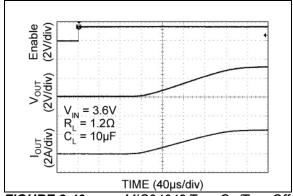


FIGURE 2-40: MIC94042 Turn-On/Turn-Off Timing8.

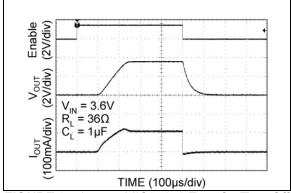


FIGURE 2-41: MIC94043 Turn-On/Turn-Off Timing.

FIGURE 2-42: MIC94043 Turn-On/Turn-Off Timing.

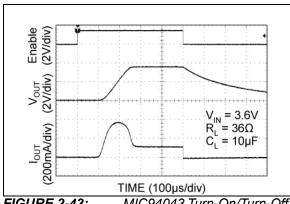


FIGURE 2-43: MIC94043 Turn-On/Turn-Off Timing.

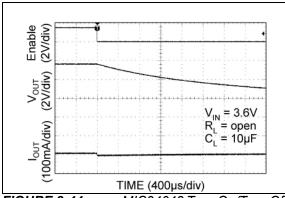
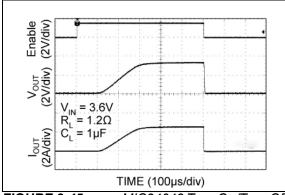



FIGURE 2-44: MIC94043 Turn-On/Turn-Off Timing.

FIGURE 2-45: MIC94043 Turn-On/Turn-Off Timing.

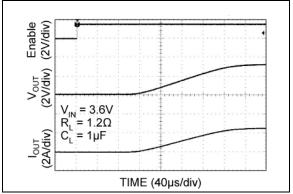


FIGURE 2-46: MIC94043 Turn-On/Turn-Off Timing.

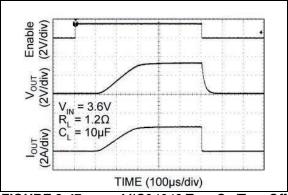
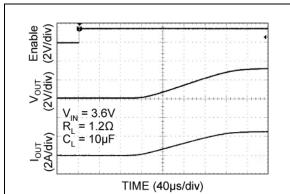



FIGURE 2-47: MIC94043 Turn-On/Turn-Off Timing.

FIGURE 2-48: MIC94043 Turn-On/Turn-Off Timing.

3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

TABLE 3-1: PIN FUNCTION TABLE

Pin Number	Pin Name	Description
1	V _{OUT}	Drain of P-Channel MOSFET.
2	GND	Ground. Should be connected to electrical ground.
3	V _{IN}	Source of P-Channel MOSFET.
4	EN	Enable (Input): Active-high CMOS/TTL control input for switch. Internal ~2 M Ω pull-down resistor. Output will be off if this pin is left floating.

4.0 APPLICATION INFORMATION

4.1 Power Dissipation Considerations

As with all power switches, the current rating of the switch is limited mostly by the thermal properties of the package and the PCB on which it's mounted. There is a simple Ohm's law type relationship between thermal resistance, power dissipation, and temperature that are analogous to an electrical circuit.

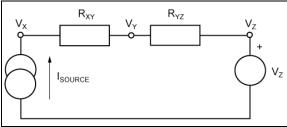


FIGURE 4-1: Simple Electrical Circuit.

From this simple circuit, one can calculate V_X if one knows I_{SOURCE} , V_Z , and the resistor values for R_{XY} and R_{YZ} using Equation 4-1.

EQUATION 4-1:

$$V_X = I_{SOURCE} \times (R_{XY} + R_{YZ}) + V_Z$$

Thermal circuits can be considered using these same rules and can be drawn similarly by replacing current sources with power dissipation (in Watts), resistance with thermal resistance (in °C/W), and voltage sources with temperature (in °C).

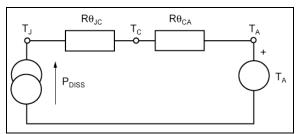


FIGURE 4-2: Simple Thermal Circuit.

By replacing the variables in the equation for V_X , one can find the junction temperature (T_J) from power dissipation, ambient temperature, and then know thermal resistance of the PCB $(R\theta_{CA})$ and the package $(R\theta_{JC})$.

EQUATION 4-2:

$$T_J = P_{DISS} \times (R\theta_{JC} + R\theta_{CA}) + T_A$$

 P_{DISS} is calculated as ${\rm I_{SWITCH}}^2$ x ${\rm R_{SW(MAX)}}.$ $R\theta_{JC}$ is found in the Temperature Specifications section of this data sheet and $R\theta_{CA}$ (the PCB thermal resistance) values for various PCB copper areas is discussed in Designing with Low Dropout Voltage Regulators.

4.1.1 AN EXAMPLE

A switch is intended to drive a 2A load and is placed on a PCB that has a ground plane area of at least 25 mm by 25 mm (625 mm 2). The voltage source is a Li-ion battery with a lower operating threshold of 3V and the ambient temperature of the assembly can be up to 50°C.

Summary of variables:

- I_{SW} = 2A
- V_{IN} = 3V to 4.2V
- T_A = 50°C
- $R\theta_{JC} = 90^{\circ}C/W$
- Rθ_{CA} = 53°C/W (as read from Figure 4-3)

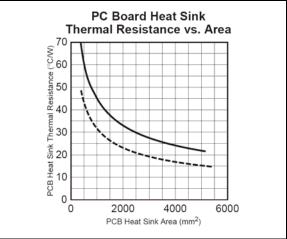


FIGURE 4-3:

Excerpt from the LDO Book.

EQUATION 4-3:

$$P_{DISS} = I_{SW}^{2} \times R_{SW(MAX)}$$

The worst case switch resistance ($R_{SW(MAX)}$) at the lowest V_{IN} of 3V is not available in the data sheet, so the next lowest value of V_{IN} is used.

 $R_{SW(MAX)}$ at 2.5V is 90 m $\!\Omega.$

If this were a figure for worst case $R_{SW(MAX)}$ for $25^{\circ}\text{C},$ an additional consideration is to allow for the maximum junction temperature of $125^{\circ}\text{C},$ the actual worst case resistance in this case can be 30% higher (See Figure 2-1). However, $90~\text{m}\Omega$ is the maximum over temperature.

EQUATION 4-4:

$$T_J = 2^2 \times 0.090 \times (90 + 53) + 50 = 101^{\circ}C$$

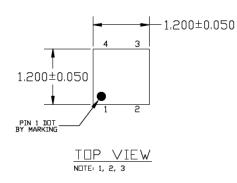
This is below the maximum of 125°C.

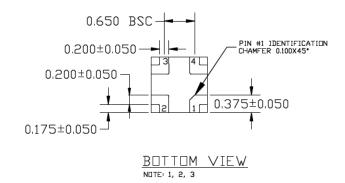
5.0 PACKAGING INFORMATION

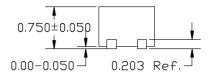
5.1 Package Marking Information

TABLE 5-1: MARKING CODES

Part Number	Marking Code	Features		
MIC94040YFL-TR	P4	Fast Turn-On		
MIC94041YFL-TR	P1	Fast Turn-On, Load Discharge		
MIC94042YFL-TR	P2	Soft-Start		
MIC94043YFL-TR	P3	Soft-Start, Load Discharge		

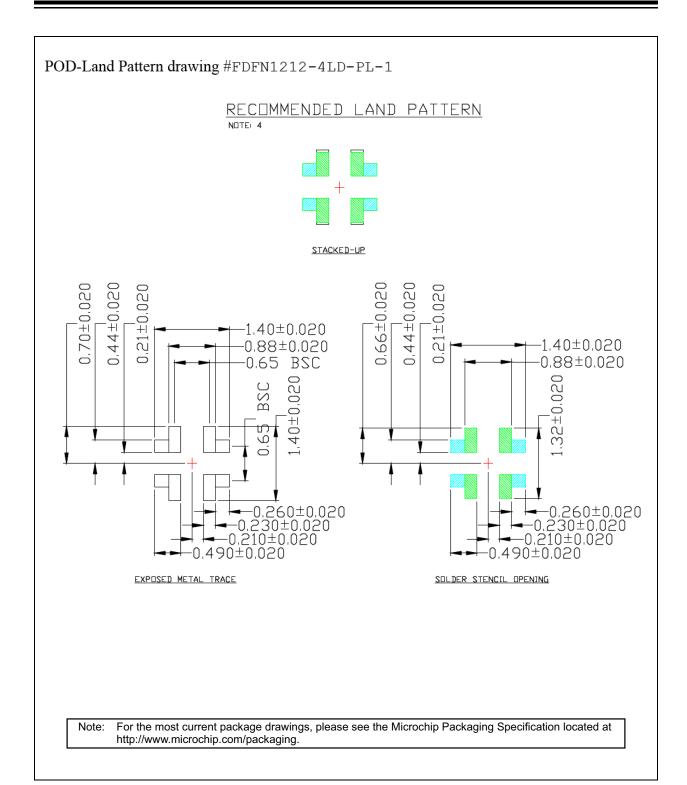

Legend	Y YY WW NNN @3	Product code or customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC® designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (@3)) can be found on the outer packaging for this package. Pin one index is identified by a dot, delta up, or delta down (triangle
	be carried	nt the full Microchip part number cannot be marked on one line, it will dover to the next line, thus limiting the number of available for customer-specific information. Package may or may not include ate logo.
	Underbar	(_) and/or Overbar (¯) symbol may not be to scale.


4-Lead FDFN Package Outline & Recommended Land Pattern


TITLE

4 LEAD FDFN 1.2x1.2 mm PACKAGE (Flip Chip) OUTLINE & RECOMMENDED LAND PATTERN

DRAWING #	FDFN1212-4LD-PL-1	UNIT	MM
Lead Frame	NiPdAu	Lead Finish	NiPdAu



NOTE:

- 1. MAX PACKAGE WARPAGE IS 0.05 MM
- 2. MAX ALLOWABLE BURR IS 0.076MM IN ALL DIRECTIONS
- 3. PIN #1 IS ON TOP WILL BE LASER MARKED
- 4. CYAN SHADED AREAS INDICATE OPTIONAL SOLDER STENCIL OPENING FOR IMPROVED THERMAL PERFORMANCE

ote: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging.

APPENDIX A: REVISION HISTORY

Revision A (November 2021)

- Converted Micrel document MIC94040/1/2/3 to Microchip data sheet template DS20006607A.
- Minor grammatical text changes throughout.

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

				Example	s:	
Device Part No.	<u>X</u> Junction Temp.	<u>XX</u> Package	- <u>XX</u> Media Type	a) MIC940	040YFL-TR:	MIC94040, -40°C to +125°C Temperature Range,
Device:	MIC94041: 2 MIC94042: 2 MIC94043: 2	28 mΩ R _{DS(ON)} 3A High with Fast Turn-On 28 mΩ R _{DS(ON)} 3A High with Fast Turn-On and 28 mΩ R _{DS(ON)} 3A High with Soft-Start 28 mΩ R _{DS(ON)} 3A High with Soft-Start and Loa	n-Side Load Switch Load Discharge n-Side Load Switch n-Side Load Switch	c) MIC940	041YFL-TR: 042YFL-TR: 043YFL-TR:	4-Lead FDFN, 5,000/Reel MIC94041, -40°C to +125°C Temperature Range, 4-Lead FDFN, 5,000/Reel MIC94042, -40°C to +125°C Temperature Range, 4-Lead FDFN, 5,000/Reel MIC94043, -40°C to +125°C Temperature Range, 4-Lead FDFN, 5,000/Reel
Junction Temperature Range:	Y = -40°C	to +125°C, RoHS-Com	pliant	Note 1:		identifier only appears in the
Package:	FL = 4-Lead	1.2 mm x 1.2 mm FDF	FN		used for order the device pac	Imber description. This identifier is ing purposes and is not printed or ikage. Check with your Microchip or package availability with the

NOTES:

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not
 mean that we are guaranteeing the product is "unbreakable". Code protection is constantly evolving. Microchip is committed to
 continuously improving the code protection features of our products.

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at https://www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the LLS A

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, NVM Express, NVMe, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, Symmcom, and Trusted Time are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2021, Microchip Technology Incorporated and its subsidiaries.

All Rights Reserved.

ISBN: 978-1-5224-9229-0

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address:

www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Fax: 317-773-5453 Tel: 317-536-2380 Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

China - Suzhou Tel: 86-186-6233-1526

China - Wuhan Tel: 86-27-5980-5300

China - Xian Tel: 86-29-8833-7252

China - Xiamen
Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4485-5910 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820