

Current Transducer HLSR-SM series

 $I_{PN} = 10 \dots 50 A$

Ref: HLSR 10-SM, HLSR 16-SM, HLSR 20-SM, HLSR 32-SM, HLSR 40-SM, HLSR 50-SM

Features

- Open loop multi-range current transducer
- Voltage output
- Single supply +5 V
- Galvanic separation between primary and secondary
- Low power consumption
- Compact design for surface mount PCB mounting
- Factory calibrated
- High bandwidth, very low loss magnetic core.

Advantages

- Extremely low profile: h = 12 mm
- Low foot-print
- Low offset drift
- Over-drivable U_{ref} .

Applications

- AC variable speed and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- · Power supplies for welding applications
- Combiner box
- MPPT.

Standards

EN 50178: 1997IEC 61010-1: 2010

• IEC 61326-1: 2012

• UL 508: 2010.

Application Domain

• Industrial.

Absolute maximum ratings

Parameter	Symbol	Unit	Value
Supply voltage (not destructive)	U_{C}	V	8
Supply voltage (not entering non standard modes)	U_{C}	V	6.5
Primary conductor temperature	T_{B}	°C	120
Electrostatic discharge voltage (HBM - Human Body Model)	$U_{\rm ESD\; HBM}$	kV	2

Stresses above these ratings may cause permanent damage.

Exposure to absolute maximum ratings for extended periods may degrade reliability.

UL 508: Ratings and assumptions of certification

File # E189713 Volume: 2 Section: 5

Standards

- CSA C22.2 NO. 14-10 INDUSTRIAL CONTROL EQUIPMENT Edition 11 Revision Date 2011/08/01
- UL 508 STANDARD FOR INDUSTRIAL CONTROL EQUIPMENT Edition 17 Revision Date 2010/04/15

Ratings

Parameter	Symbol	Unit	Comment
Primary involved potential		V AC/DC	600
Max surrounding air temperature	T_{A}	°C	105
Primary current	I_{P}	А	According to series primary current
Secondary supply voltage	U_{C}	V DC	5
Output voltage	U_{out}	V	0 to 5

Conditions of acceptability

- 1 These devices have been evaluated for overvoltage category III and for use in pollution degree 2 environment.
- 2 A suitable enclosure shall be provided in the end-use application.
- 3 The terminals have not been evaluated for field wiring.
- 4 These devices are intended to be mounted on a printed wiring board of end use equipment. The suitability of the connections (including spacings) shall be determined in the end-use application.
- 5 Primary terminals shall not be straightened since assembly of housing case depends upon bending of the terminals.
- 6 Any surface of polymeric housing have not been evaluated as insulating barrier.
- 7 Low voltage control circuit shall be supplied by an isolating source (such as a transformer, optical isolator, limiting impedance or electro-mechanical relay).

Marking

Only those products bearing the UR Mark should be considered to be Listed or Recognized and covered under UL's Follow-Up Service. Always look for the Mark on the product.

Insulation coordination

Parameter	Symbol	Unit	≤ Value	Comment
RMS voltage for AC insulation test, 50 Hz, 1 min	U_{d}	kV	4.3	
Impulse withstand voltage 1.2/50 µs	U_{Ni}	kV	8	
Clearance (pri sec.)	d_{CI}	mm	10	Shortest distance through air
Creepage distance (pri sec.)	d_{Cp}	mm	10	Shortest path along device body
Clearance (pri sec.)	-	mm	8	When mounted on PCB with recommended layout
Case material	-	-	V0	According to UL 94
Comparative tracking index	CTI		600	
Application example		V	600	Reinforced insulation, non uniform field according to EN 50178, IEC 61010 CAT III, PD2
Application example		V	1000	Basic insulation, non uniform field according to EN 50178, IEC 61010 CAT III, PD2
Application example		V	600	According to UL 508

Environmental and mechanical characteristics

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Ambient operating temperature	T_{A}	°C	-40		105	
Ambient storage temperature	T_{Ast}	°C	-40		105	
Mass	m	g			5	

Electrical data HLSR 10-SM

HLSR-SM series

At $T_{\rm A}$ = 25 °C, $U_{\rm C}$ = +5 V, $R_{\rm L}$ = 10 kΩ unless otherwise noted (see Min, Max, typ, definition paragraph in page 10).

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal RMS current	I_{PN}	Α		10		
Primary current, measuring range	I_{PM}	Α	-25		25	For <i>U</i> _c > 4.6 V
Number of primary turns	N_{P}	-		1		
Resistance of primary jumper @ $T_{\rm A}$ = 25 °C	R_{P}	mΩ		0.21		
Resistance of primary jumper @ $T_{\rm A}$ = 105 °C	R_{P}	mΩ		0.29		T jumper = 120 °C
Supply voltage 1)	U_{c}	V	4.5	5	5.5	
Current consumption	I_{C}	mA		19	25	
Reference voltage (output)	U_{ref}	V	2.48	2.5	2.52	Internal reference
Reference voltage (input)	U_{ref}	V	0.5		2.65	External reference
Output voltage range @ $I_{\rm PM}$	U_{out} – U_{ref}	V	-2		2	Over operating temperature range
Internal series resistance of reverence voltage	$R_{\rm ref}$	Ω	130	200	300	series
Output internal resistance	$R_{\rm out}$	Ω		2	5	series
Load capacitance	C_{L}	nF	0		6	
Electrical offset voltage referred to primary @ $I_{\rm p}$ = 0	U_{OE}	mV	- 5		5	$U_{\rm out}$ – $U_{\rm ref}$ @ $U_{\rm ref}$ = 2.5 V
Electrical offset current referred to primary	I _{o E}	mA	-62.5		62.5	
Temperature coefficient of $U_{\rm ref}$	TCU_{ref}	ppm/K	-170		170	−40 °C 105 °C
Temperature coefficient of U_{OE} referred to primary	$TCU_{ extsf{O} extsf{E}}$	mV/K	-0.075		0.075	−40 °C 105 °C
Temperature coefficient of I_{OE} referred to primary	TCI _{OE}	mA/K	-0.94		0.94	−40 °C 105 °C
Nominal sensitivity	S_{N}	mV/A		80		800 mV @ I _{PN}
Sensitivity error	$\varepsilon_{_S}$	%	-0.5		0.5	Factory adjustment
Temperature coefficient of S	TCS	ppm/K	-200		200	−40 °C 105 °C
Linearity error 0 I_{PN}	ε_{L}	% of $I_{\rm PN}$	-0.5		0.5	
Linearity error 0 I_{PM}	ε_{L}	% of $I_{\rm PM}$	-0.5		0.5	
Magnetic offset current (@ 10 × I_{PN}) referred to primary	I_{OM}	А	-0.25		0.25	
Delay time @ 10 % of I_{PN}	t _{D 10}	μs			2	@ 50 A/µs
Delay time @ 90 % of I_{PN}	t _{D 90}	μs			2.5	@ 50 A/µs
Frequency bandwidth (-3 dB)	BW	kHz		400		
Noise voltage spectral density referred to primary 100 Hz 100 kHz	u_{no}	μV/√ Hz			28	
RMS noise voltage referred to primary DC 10 kHz DC 100 kHz DC 1 MHz	U_{no}	mVpp		17.5 46.1 65.7		
Sum of sensitivity and linearity @ $I_{\rm PN}$	$\varepsilon_{_{S L}}$	% of $I_{\rm PN}$	-1		1	
Sum of sensitivity and linearity @ $I_{\rm PN}$ @ $T_{\rm A}$ = +85 °C	€ _{S L 85 °C}	% of $I_{\rm PN}$	-2.9		2.9	See formula note 2)
Sum of sensitivity and linearity @ I_{PN} @ T_A = +105 °C	ε _{S L 105 °C}	% of $I_{\rm PN}$	-3.4		3.4	See formula note 2)

²⁾
$$\varepsilon_{SL}(T_A) = \varepsilon_{SL25} + \left(TCS + \frac{TCI_{OE}}{I_{PN}}\right) \times |T_A - 25|$$

Electrical data HLSR 16-SM

HLSR-SM series

At $T_{\rm A}$ = 25 °C, $U_{\rm C}$ = +5 V, $R_{\rm L}$ = 10 k Ω unless otherwise noted (see Min, Max, typ, definition paragraph in page 10).

A C L	•					· · · ·
Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal RMS current	I_{PN}	Α		16		
Primary current, measuring range	I_{PM}	Α	-40		40	For <i>U</i> _c > 4.6 V
Number of primary turns	N_{P}	-		1		
Resistance of primary jumper @ $T_{\rm A}$ = 25 °C	$R_{\rm p}$	mΩ		0.21		
Resistance of primary jumper @ $T_{\rm A}$ = 105 °C	R_{P}	mΩ		0.29		T jumper = 120 °C
Supply voltage 1)	U_{C}	V	4.5	5	5.5	
Current consumption	I_{C}	mA		19	25	
Reference voltage (output)	U_{ref}	V	2.48	2.5	2.52	Internal reference
Reference voltage (input)	U_{ref}	V	0.5		2.65	External reference
Output voltage range @ I_{PM}	U_{out} – U_{ref}	V	-2		2	Over operating temperature range
Internal series resistance of reverence voltage	$R_{\rm ref}$	Ω	130	200	300	series
Output internal resistance	$R_{\rm out}$	Ω		2	5	series
Load capacitance	C_{L}	nF	0		6	
Electrical offset voltage referred to primary @ $I_p = 0$	$U_{\mathrm{O}\mathrm{E}}$	mV	-5		5	$U_{\rm out}$ – $U_{\rm ref}$ @ $U_{\rm ref}$ = 2.5 V
Electrical offset current referred to primary	I _{oe}	mA	-100		100	
Temperature coefficient of $U_{\rm ref}$	TCU_{ref}	ppm/K	-170		170	−40 °C 105 °C
Temperature coefficient of U_{OE} referred to primary	TCU_{OE}	mV/K	-0.075		0.075	−40 °C 105 °C
Temperature coefficient of I_{OE} referred to primary	TCI _{OE}	mA/K	-1.5		1.5	−40 °C 105 °C
Nominal sensitivity	S_{N}	mV/A		50		800 mV @ I _{PN}
Sensitivity error	$\varepsilon_{_S}$	%	-0.5		0.5	Factory adjustment
Temperature coefficient of S	TCS	ppm/K	-200		200	-40 °C 105 °C
Linearity error 0 I_{PN}	ε_{L}	% of $I_{\rm PN}$	-0.5		0.5	
Linearity error 0 I_{PM}	ε_{L}	% of $I_{\rm PM}$	-0.5		0.5	
Magnetic offset current (@ 10 × I_{PN}) referred to primary	$I_{ m OM}$	Α	-0.25		0.25	
Delay time @ 10 % of I _{PN}	t _{D 10}	μs			2	@ 50 A/µs
Delay time @ 90 % of $I_{\rm PN}$	t _{D 90}	μs			2.5	@ 50 A/µs
Frequency bandwidth (-3 dB)	BW	kHz		400		
Noise voltage spectral density referred to primary 100 Hz 100 kHz	u_{no}	μV/√ Hz			28	
RMS noise voltage referred to primary DC 10 kHz DC 100 kHz DC 1 MHz	U_{no}	mVpp		11.3 28.6 41.2		
Sum of sensitivity and linearity @ I_{PN}	$\varepsilon_{_{SL}}$	% of $I_{\rm PN}$	-1		1	
Sum of sensitivity and linearity @ I_{PN} @ T_{A} = +85 °C	ε _{S L 85 °C}	% of $I_{\rm PN}$	-2.9		2.9	See formula note 2)
Sum of sensitivity and linearity @ I_{PN} @ T_{A} = +105 °C	€ _{S L 105 °C}	% of I_{PN}	-3.4		3.4	See formula note 2)

²⁾
$$\varepsilon_{S L}(T_{A}) = \varepsilon_{S L 25} + \left(TCS + \frac{TCI_{O E}}{I_{P N}}\right) \times |T_{A} - 25|$$

Electrical data HLSR 20-SM

HLSR-SM series

At $T_{\rm A}$ = 25 °C, $U_{\rm C}$ = +5 V, $R_{\rm L}$ = 10 k Ω unless otherwise noted (see Min, Max, typ, definition paragraph in page 10).

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal RMS current	I_{PN}	Α		20		
Primary current, measuring range	I_{PM}	А	-50		50	For <i>U</i> _c > 4.6 V
Number of primary turns	N_{P}	-		1		
Resistance of primary jumper @ T_A = 25 °C	R_{P}	mΩ		0.21		
Resistance of primary jumper @ $T_{\rm A}$ = 105 °C	R_{P}	mΩ		0.29		T jumper = 120 °C
Supply voltage 1)	U_{C}	V	4.5	5	5.5	
Current consumption	$I_{\rm C}$	mA		19	25	
Reference voltage (output)	U_{ref}	V	2.48	2.5	2.52	Internal reference
Reference voltage (input)	U_{ref}	V	0.5		2.65	External reference
Output voltage range @ I_{PM}	U_{out} – U_{ref}	V	-2		2	Over operating temperature range
Internal series resistance of reverence voltage	$R_{\rm ref}$	Ω	130	200	300	series
Output internal resistance	$R_{\rm out}$	Ω		2	5	series
Load capacitance	C_{L}	nF	0		6	
Electrical offset voltage referred to primary @ $I_{\rm P}$ = 0	$U_{\mathrm{O}\mathrm{E}}$	mV	-5		5	$U_{\rm out}$ – $U_{\rm ref}$ @ $U_{\rm ref}$ = 2.5 V
Electrical offset current referred to primary	I _{oe}	mA	-125		125	
Temperature coefficient of $U_{\rm ref}$	TCU_{ref}	ppm/K	-170		170	−40 °C 105 °C
Temperature coefficient of $U_{\text{O E}}$ referred to primary	TCU_{OE}	mV/K	-0.075		0.075	−40 °C 105 °C
Temperature coefficient of I_{OE} referred to primary	TCI _{OE}	mA/K	-1.88		1.88	−40 °C 105 °C
Nominal sensitivity	S_{N}	mV/A		40		800 mV @ I _{PN}
Sensitivity error	$\varepsilon_{_{S}}$	%	-0.5		0.5	Factory adjustment
Temperature coefficient of S	TCS	ppm/K	-200		200	−40 °C 105 °C
Linearity error 0 I _{PN}	ε_{L}	% of $I_{\rm PN}$	-0.5		0.5	
Linearity error 0 I_{PM}	ε_{L}	% of $I_{\rm PM}$	-0.5		0.5	
Magnetic offset current (@ 10 × I_{PN}) referred to primary	$I_{ m OM}$	Α	-0.25		0.25	
Delay time @ 10 % of $I_{\rm PN}$	t _{D 10}	μs			2	@ 50 A/µs
Delay time @ 90 % of $I_{\rm PN}$	t _{D 90}	μs			2.5	@ 50 A/µs
Frequency bandwidth (-3 dB)	BW	kHz		400		
Noise voltage spectral density referred to primary 100 Hz 100 kHz	u_{no}	μV/√ Hz			28	
RMS noise voltage referred to primary DC 10 kHz DC 100 kHz DC 1 MHz	U_{no}	m∨pp		9.2 22.8 33		
Sum of sensitivity and linearity @ $I_{\rm PN}$	$\varepsilon_{_{SL}}$	% of $I_{\rm PN}$	-1		1	
Sum of sensitivity and linearity @ I_{PN} @ T_A = +85 °C	€ _{S L 85 °C}	% of $I_{\rm PN}$	-2.9		2.9	See formula note 2)
Sum of sensitivity and linearity @ I_{PN} @ T_A = +105 °C	€ _{S L 105 °C}	% of $I_{\rm PN}$	-3.4		3.4	See formula note 2)
		1			L	L

²⁾
$$\varepsilon_{S L}(T_{A}) = \varepsilon_{S L 25} + \left(TCS + \frac{TCI_{OE}}{I_{PN}}\right) \times |T_{A} - 25|$$

Electrical data HLSR 32-SM

HLSR-SM series

At $T_{\rm A}$ = 25 °C, $U_{\rm C}$ = +5 V, $R_{\rm L}$ = 10 k Ω unless otherwise noted (see Min, Max, typ, definition paragraph in page 10).

A , _ C , _ L	(, -, -,		. 1 3	
Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal RMS current	I_{PN}	Α		32		
Primary current, measuring range	I_{PM}	Α	-80		80	For <i>U</i> _c > 4.6 V
Number of primary turns	N_{P}	-		1		
Resistance of primary jumper @ $T_{\rm A}$ = 25 °C	R_{P}	mΩ		0.21		
Resistance of primary jumper @ $T_{\rm A}$ = 105 °C	R_{P}	mΩ		0.29		T jumper = 120 °C
Supply voltage 1)	U_{C}	V	4.5	5	5.5	
Current consumption	I_{C}	mA		19	25	
Reference voltage (output)	U_{ref}	V	2.48	2.5	2.52	Internal reference
Reference voltage (input)	U_{ref}	V	0.5		2.65	External reference
Output voltage range @ $I_{\rm PM}$	U_{out} – U_{ref}	V	-2		2	Over operating temperature range
Internal series resistance of reverence voltage	$R_{\rm ref}$	Ω	130	200	300	series
Output internal resistance	R _{out}	Ω		2	5	series
Load capacitance	C_{L}	nF	0		6	
Electrical offset voltage referred to primary @ $I_p = 0$	$U_{\mathrm{O}\mathrm{E}}$	mV	-5		5	$U_{\rm out}$ – $U_{\rm ref}$ @ $U_{\rm ref}$ = 2.5 V
Electrical offset current referred to primary	I _{oe}	mA	-200		200	
Temperature coefficient of $U_{\rm ref}$	TCU_{ref}	ppm/K	-170		170	−40 °C 105 °C
Temperature coefficient of U_{OE} referred to primary	TCU_{OE}	mV/K	-0.075		0.075	−40 °C 105 °C
Temperature coefficient of I_{OE} referred to primary	TCI _{OE}	mA/K	-3		3	−40 °C 105 °C
Nominal sensitivity	S_{N}	mV/A		25		800 mV @ I _{PN}
Sensitivity error	$\epsilon_{_S}$	%	-0.5		0.5	Factory adjustment
Temperature coefficient of S	TCS	ppm/K	-200		200	−40 °C 105 °C
Linearity error 0 I_{PN}	ε_{L}	% of $I_{\rm PN}$	-0.5		0.5	
Linearity error 0 $I_{_{\rm PM}}$	$arepsilon_{L}$	% of $I_{\rm PM}$	-0.5		0.5	
Magnetic offset current (@ 10 × I_{PN}) referred to primary	$I_{ m OM}$	Α	-0.25		0.25	
Delay time @ 10 % of I_{PN}	t _{D 10}	μs			2	@ 50 A/µs
Delay time @ 90 % of $I_{\rm PN}$	t _{D 90}	μs			2.5	@ 50 A/µs
Frequency bandwidth (-3 dB)	BW	kHz		400		
Noise voltage spectral density referred to primary 100 Hz 100 kHz	u_{no}	μV/√ Hz			8.75	
RMS noise voltage referred to primary DC 10 kHz DC 100 kHz DC 1 MHz	U_{no}	m∨pp		6.2 14 20.7		
Sum of sensitivity and linearity $\textcircled{0}$ I_{PN}	£	% of I_{PN}	-1		1	
	$\varepsilon_{_{SL}}$		l	l		
Sum of sensitivity and linearity @ I_{PN} @ T_A = +85 °C	€ _{S L 85 °C}	% of I_{PN}	-2.9		2.9	See formula note 2)

²⁾
$$\varepsilon_{S L}(T_{A}) = \varepsilon_{S L 25} + \left(TCS + \frac{TCI_{O E}}{I_{P N}}\right) \times |T_{A} - 25|$$

Electrical data HLSR 40-SM

HLSR-SM series

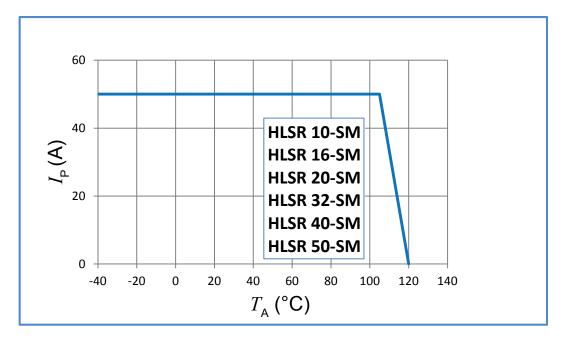
 $\underline{\text{At } T_{\text{A}}}$ = 25 °C, U_{C} = +5 V, R_{L} = 10 kΩ unless otherwise noted (see Min, Max, typ, definition paragraph in page 10).

Parameter	Symbol	Unit	Min	Тур	Max	Comment
Primary nominal RMS current	I_{PN}	Α		40		
Primary current, measuring range	I_{PM}	Α	-100		100	For <i>U</i> _c > 4.6 V
Number of primary turns	N_{P}	-		1		
Resistance of primary jumper @ $T_{\rm A}$ = 25 °C	R_{P}	mΩ		0.21		
Resistance of primary jumper @ $T_{\rm A}$ = 105 °C	$R_{\rm P}$	mΩ		0.29		T jumper = 120 °C
Supply voltage 1)	U_{c}	V	4.5	5	5.5	
Current consumption	I_{C}	mA		19	25	
Reference voltage (output)	U_{ref}	V	2.48	2.5	2.52	Internal reference
Reference voltage (input)	U_{ref}	V	0.5		2.65	External reference
Output voltage range @ $I_{\rm PM}$	U_{out} – U_{ref}	V	-2		2	Over operating temperature range
Internal series resistance of reverence voltage	$R_{\rm ref}$	Ω	130	200	300	series
Output internal resistance	$R_{\rm out}$	Ω		2	5	series
Load capacitance	C_{L}	nF	0		6	
Electrical offset voltage referred to primary @ $I_P = 0$	U_{OE}	mV	-5		5	$U_{\rm out}$ – $U_{\rm ref}$ @ $U_{\rm ref}$ = 2.5 V
Electrical offset current referred to primary	I _{OE}	mA	-250		250	
Temperature coefficient of U_{ref}	TCU_{ref}	ppm/K	-170		170	−40 °C 105 °C
Temperature coefficient of U_{OE} referred to primary	$TCU_{ extsf{O} extsf{E}}$	mV/K	-0.075		0.075	−40 °C 105 °C
Temperature coefficient of $I_{\text{O E}}$ referred to primary	TCI _{OE}	mA/K	-3.75		3.75	−40 °C 105 °C
Nominal sensitivity	S_{N}	mV/A		20		800 mV @ I _{PN}
Sensitivity error	$\varepsilon_{_S}$	%	-0.5		0.5	Factory adjustment
Temperature coefficient of S	TCS	ppm/K	-200		200	−40 °C 105 °C
Linearity error 0 I_{PN}	ε_{L}	% of $I_{\rm PN}$	-0.5		0.5	
Linearity error 0 I_{PM}	ε_{L}	% of $I_{\rm PM}$	-0.5		0.5	
Magnetic offset current (@ 10 × I_{PN}) referred to primary	I_{OM}	А	-0.25		0.25	
Delay time @ 10 % of $I_{\rm PN}$	t _{D 10}	μs			2	@ 50 A/µs
Delay time @ 90 % of $I_{\rm PN}$	t _{D 90}	μs			2.5	@ 50 A/µs
Frequency bandwidth (-3 dB)	BW	kHz		400		
Noise voltage spectral density referred to primary 100 Hz 100 kHz	u_{no}	μV/√ Hz			7	
RMS noise voltage referred to primary DC 10 kHz DC 100 kHz DC 1 MHz	U_{no}	mVpp		5.1 11.1 16.6		
Sum of sensitivity and linearity @ $I_{\rm PN}$	$\varepsilon_{_{S L}}$	% of $I_{\rm PN}$	-1		1	
Sum of sensitivity and linearity @ I_{PN} @ T_{A} = +85 °C	ε _{S L 85 °C}	% of $I_{\rm PN}$	-2.9		2.9	See formula note 2)
Sum of sensitivity and linearity @ $I_{\rm PN}$ @ $T_{\rm A}$ = +105 °C	ε _{S L 105 °C}	% of $I_{\rm PN}$	-3.4		3.4	See formula note 2)

²⁾
$$\varepsilon_{SL}(T_{A}) = \varepsilon_{SL25} + \left(TCS + \frac{TCI_{OE}}{I_{PN}}\right) \times |T_{A} - 25|$$

Electrical data HLSR 50-SM

HLSR-SM series


At $T_{\rm A}$ = 25 °C, $U_{\rm C}$ = +5 V, $R_{\rm L}$ = 10 k Ω unless otherwise noted (see Min, Max, typ, definition paragraph in page 10).

Symbol	Unit	Min	Тур	Max	Comment
I_{PN}	А		50		
I_{PM}	Α	-125		125	For <i>U</i> _c > 4.6 V
N_{P}	-		1		
R_{P}	mΩ		0.21		
R_{P}	mΩ		0.29		T jumper = 120 °C
U_{C}	V	4.5	5	5.5	
$I_{\mathtt{C}}$	mA		19	25	
U_{ref}	V	2.48	2.5	2.52	Internal reference
U_{ref}	V	0.5		2.65	External reference
U_{out} – U_{ref}	V	-2		2	Over operating temperature range
$R_{\rm ref}$	Ω	130	200	300	series
R_{out}	Ω		2	5	series
C_{L}	nF	0		6	
U_{OE}	mV	-5		5	$U_{\rm out}$ – $U_{\rm ref}$ @ $U_{\rm ref}$ = 2.5 V
Ioe	mA	-313		313	
TCU_{ref}	ppm/K	-170		170	−40 °C 105 °C
$TCU_{ extsf{O} extsf{E}}$	mV/K	-0.05		0.05	−40 °C 105 °C
TCI _{OE}	mA/K	-3.125		3.125	−40 °C 105 °C
S_{N}	mV/A		16		800 mV @ I _{PN}
$\varepsilon_{_S}$	%	-0.5		0.5	Factory adjustment
TCS	ppm/K	-200		200	−40 °C 105 °C
ε_{L}	% of $I_{\rm PN}$	-0.5		0.5	
ε_{L}	% of $I_{\rm PM}$	-0.5		0.5	
I_{OM}	Α	-0.25		0.25	
t _{D 10}	μs			2	@ 50 A/µs
t _{D 90}	μs			2.5	@ 50 A/µs
BW	kHz		400		
u_{no}	μV/√ Hz			5.6	
U_{no}	mVpp		4.3 8.8 13.3		
$\varepsilon_{_{SL}}$	% of $I_{\rm PN}$	-1		1	
ε _{s L 85°C}	% of $I_{\rm PN}$	-2.7		2.7	See formula note 2)
€ _{S L 105 °C}	% of $I_{\rm PN}$	-3.1		3.1	See formula note 2)
	I_{PN} I_{PM} N_{P} R_{P} R_{P} U_{C} I_{C} U_{ref} $U_{out} - U_{ref}$ R_{ref} R_{out} C_{L} U_{OE} I_{OE} TCU_{ref} TCU_{OE} TCI_{OE} S_{N} ε_{S} TCS ε_{L} ε_{L} I_{DM} t_{DM} t_{DM} t_{DM} U_{no} U_{no}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I_{PN} A I_{PM}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

²⁾
$$\varepsilon_{S L}(T_{A}) = \varepsilon_{S L 25} + \left(TCS + \frac{TCI_{O E}}{I_{P N}}\right) \times |T_{A} - 25|$$

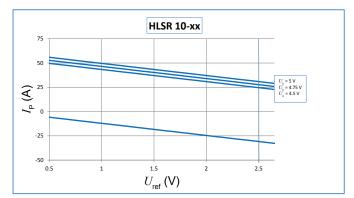
Maximum continuous DC current

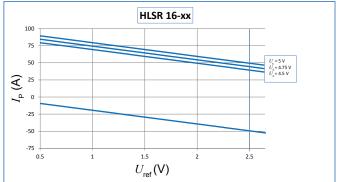
Important notice: whatever the usage and/or application, the transducer jumper temperature shall not go above the maximum ratings of 120 °C as stated in page 2 of this datasheet.

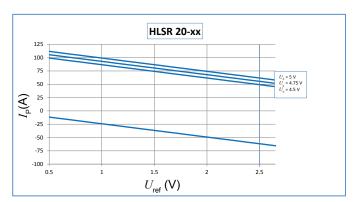
Definition of typical, minimum and maximum values

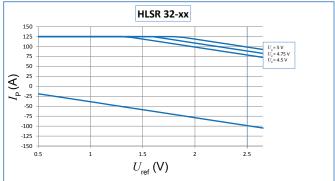
Minimum and maximum values for specified limiting and safety conditions have to be understood as such as well as values shown in "typical" graphs.

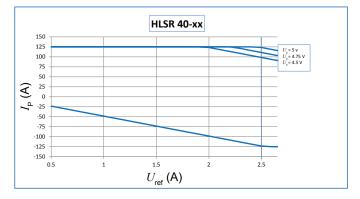
On the other hand, measured values are part of a statistical distribution that can be specified by an interval with upper and lower limits and a probability for measured values to lie within this interval.

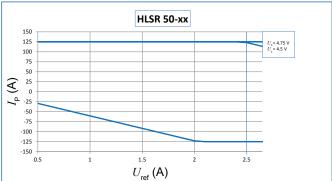

Unless otherwise stated (e.g. "100 % tested"), the LEM definition for such intervals designated with "min" and "max" is that the probability for values of samples to lie in this interval is 99.73 %.

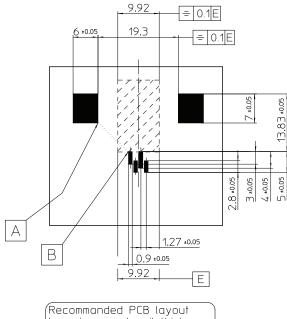

For a normal (Gaussian) distribution, this corresponds to an interval between -3 sigma and +3 sigma. If "typical" values are not obviously mean or average values, those values are defined to delimit intervals with a probability of 68.27 %, corresponding to an interval between -sigma and +sigma for a normal distribution.


Typical, minimum and maximum values are determined during the initial characterization of the product.




Measuring range versus external reference voltage





PCB footprint (in mm)

	d _{Cl} (mm)	d_{Cp} (mm)
А-В	10	10

Recommanded PCB layout based on a stencil thickness (of 150um (.006 inch)

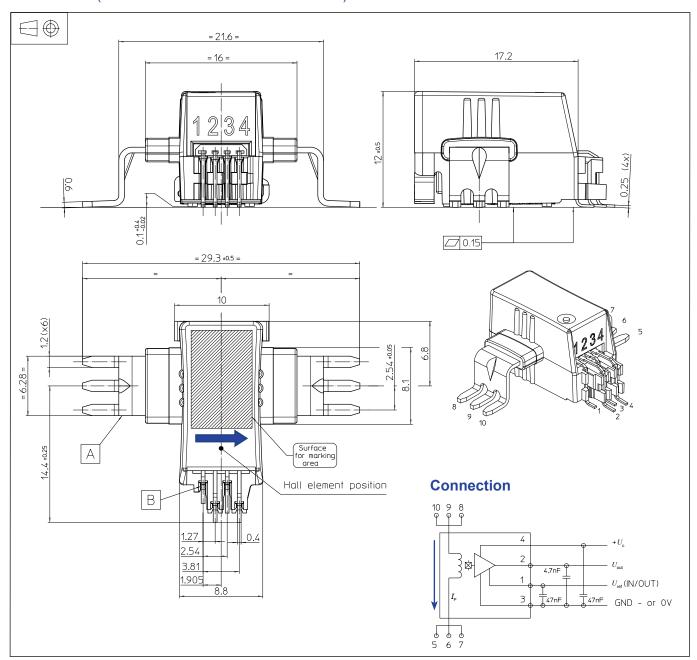
Assembly on PCB

- Pb free reflow profile
- · No clean process only

Safety

This transducer must be used in limited-energy secondary circuits according to IEC 61010-1.

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.



Caution, risk of electrical shock.

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply). Ignoring this warning can lead to injury and/or cause serious damage. This transducer is a build-in device, whose conducting parts must be inaccessible after installation. A protective housing or additional shield could be used. Main supply must be able to be disconnected.

Dimensions (in mm. General linear tolerance ±0.2 mm)

Remarks

- ullet $U_{
 m out}$ is positive with respect to $U_{
 m ref}$ when positive $I_{
 m P}$ flows in direction of the arrow shown on the drawing above.
- Installation of the transducer must be done, unless otherwise specified on the datasheet, according to LEM Transducer Generic Mounting Rules. Please refer to LEM document N°ANE120504 available on our Web site: https://www.lem.com/en/file/3137/download/